梦里梦到的人是谁在想谁?

本文探讨了梦境的成因,提出了梦境可能是由个人意识或多个意识的冲突构成,并非简单地反映思念。通过实验来验证梦中人是否因思念而出现,同时指出梦可能是经历的重组和身体反应的体现。梦里的人虽然可能与做梦者有关,但不一定直接反映现实中的关系。最后,文章强调梦是意识的表现,而意识本身是一种物质现象。

梦里梦到某人,某人和我,到底是谁在想谁?

假定做梦时梦里出现的人就是因为想念,那么,要想回答这个问题,我看其实不难。

 

1、做梦到底是怎么回事,真的是因为思念、想念吗?是谁在思念、想念谁?

做梦究竟是怎么回事,其实至今没有一个人做出令所有人都信服的回答。

假定做梦就是因为一个人对另一个人的思念或想念。那么,要想证明它,其实并不难。

你可以找另一个人来,俩人做个试验。首先,你不分昼夜、不停地想对方,但是对方不想你,试试看对方会不会在梦里看见你;其次,反过来,你不要想对方,让对方不分昼夜、不停地想你,看看你会不会在梦里看见他。

通过以上试验,你能立刻分清梦里出现的人究竟为什么出现:你想对方还是对方想你。

 

 

2、人不止有一个意识,梦可能是你的另一个意识的结果,并且梦通常与你没有太大和太直接的关系。

人不止有一个意识,怎么解释?

我们经常会发生思想斗争。思想斗争就是两个意识的结果。例如走在街上,看见另一个人钱包里的钱,就会有一种念头出来:把他的钱拿走、归我。当你正要那么做的时候,突然有另一种念头出现:不要那样做——那是犯法的。两个念头开始了斗争。实际上是这个人左右为难:一边是善念,一边是恶念;发生了人性的善恶之争。

人们做梦时,时常发现梦境怪诞、难以捉摸和难以解释,并非本人的经历,但是却仿佛与本人非常相关,让本人有如临其境的感觉,这可能就是你另一个意识的结果。因为你所有的意识都属于你。但只有你非常清醒时的意识是真的你。做梦时,“你”在睡觉。

 

 

3、梦境从哪儿来?梦里的人是谁?

梦非常稀奇古怪。梦境到底是怎么来的?我认为梦是人的经历,人的经历被打乱后重新组合,所以梦境通常“乱七八糟”,并且人身上还有遗传自祖先的基因、信息等,这所有的一切组成了梦。

例如,我很久以前的经历如某处景致,被掐头去尾、割裂、打碎,形成了后来我梦中的似是而非、似曾相识的一些其他景致。

有时候,梦境是由身体脏腑的反应促成的,例如膀胱受到压迫人就会梦到找厕所。

梦里的人绝对不会与做梦的人没有任何关联,就像现实世界中“我”与其他的所有人共同组成了现实世界,梦里的“我”也与其他“人”共同组成了梦中世界。

 

 

个人看法:梦里梦到的人并非一定是谁在想谁,梦境也并非一定与本人有直接、利害关系,但是梦一定是人意识的结果;现在科学认识到,人的意识(或称思维)是一种物质。

内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研员及工程技术员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研员及从事能源预测相关工作的工程技术员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
本研究项目聚焦于毫米波雷达环境感知系统的开发,以1843AOPEVM硬件平台为基础构建点云生成框架。该系统采用快速傅里叶变换相位检测技术实现角度测量,通过频域信号处理将雷达回波转换为三维空间坐标集合。在技术演进过程中,研究团队持续优化系统架构以应对实际应用中的技术挑战。 针对复杂地形环境中的信号干扰问题,项目组于2023年5月提出数据层级的地面杂波抑制方案,计划通过新型滤波函数提升系统在强反射背景下的目标识别能力。该改进措施将配套详细的技术文档说明,确保算法逻辑的透明性和可复现性。 随着研究深入,系统功能模块逐步完善。2023年7月版本规划集成雷达成像组件,旨在通过多维度数据融合提升点云建模精度。此项更新将在相关学术论文正式发表后,于代码托管平台同步发布完整实现方案。同年11月,团队进一步引入压缩感知理论框架,该创新性方法能够显著降低数据采集需求同时保持信号重建质量,相关研究成果已通过学术评审。 需要特别关注的是,2024年6月发布的技術备忘录指出扩展卡尔曼滤波第三版实现存在算法缺陷。研究数据表明,采用位置差分进行速度预估可能引发估计值发散现象,建议在工程应用中采用更稳健的状态估计策略。 本项目完整技术栈涵盖毫米波信号处理、压缩感知理论、动态系统估计等多个前沿领域,形成了从原始信号采集到三维环境重建的完整技术链条。系统实现代码已封装为标准化模块,其命名规范明确体现了毫米波雷达点云生成的核心功能定位。通过持续的技术迭代与算法优化,该研究为自动驾驶、智能感知等应用场景提供了可靠的技术基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值