2型糖尿病及心血管疾病-患者教育偏好研究-笔记

英国莱斯特糖尿病中心的一项调研显示,大多数患者(约66%)倾向于一对一的医生或护士沟通来获取健康教育,其次是通过传单(13%)。65岁以下、男性、高中及以上教育水平的患者更倾向于在线教育。调查结果强调了性别、年龄和教育背景在教育偏好上的影响。对于自我管理教育,一对一的专业指导是最受欢迎的方式。

source:莱斯特糖尿病中心,莱斯特总医院,莱斯特,英国

调研地区:英国
调研用户人数:1559名

用户情况:年龄、性别、诊断、教育水平、种族、社会经济地位
患教偏好:1对1医生或护士沟通、小组、在线、电话、传单、其他
诊断:2型糖尿病、心血管疾病
合并症:肥胖、糖血症、高胰岛素血症

用户调研结果:

全年龄、教育水平、诊断的用户,对「1对1医生或护士沟通」的偏好都保持在66%左右,其次是传单13%;

65岁以下、男性、受教育水平高中以上,这3类用户对于在线教育的偏好在11%。

对于心血管疾病或2型糖尿病患者的自我管理教育方 案,所有群体的总体偏好是一对一地向医生或护士学 习。 群体对其他方法的偏好各不相同。
影响偏好的 主要社会人口因素是性别、年龄和受教育程度。 关 于在线教育,对这种方法进行高度排序的人口与整个
人口显著不同,他们更有可能更年轻(年龄≤50 岁),更有可能是男性,更有可能接受更高水平的完 成教育。

调研内容注意:
确认伦理认可(by伦理委员会)
避免手机个人识别信息

内容概要:本文介绍了利用Matlab代码实现处理IMU、GPS传感器数据的多种姿态解算算法,重点包括卡尔曼滤波和扩展卡尔曼滤波等技术,旨在提升导航系统的精度与稳定性。通过对传感器数据进行融合与滤波处理,有效解决了惯性导航系统中存在的累积误差问题,提高了动态环境下的姿态估计准确性。文章还提供了完整的算法实现流程和仿真验证,展示了不同滤波方法在实际应用场景中的性能对比。; 适合人群:具备一定Matlab编程基础,从事导航、控制、机器人或自动驾驶等相关领域研究的科研人员及工程技术人员,尤其适合研究生及以上学历或有相关项目经验的研发人员。; 使用场景及目标:①应用于无人机、无人车、机器人等自主导航系统中的姿态估计;②用于学与科研中对滤波算法的理解与改进;③帮助开发者掌握IMU【处理IMU、GPS传感器】现了多种姿态解算算法,如卡尔曼滤波、扩展卡尔曼滤波等,以提高导航系统的精度和稳定性(Matlab代码实现)/GPS融合算法的设计思路与实现技巧,提升系统鲁棒性与定位精度。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,逐步调试并理解各算法模块的作用,重点关注传感器数据预处理、状态方程构建、噪声协方差调节及滤波结果分析等关键环节,以达到深入掌握姿态解算核心技术的目的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值