在二叉树中,和遍历结点相关的题其实都是更优先使用递归法的,因为递归法是与二叉树性质非常吻合的一种思想。其他的如迭代遍历法、层序遍历法模板化较强(过会儿再将模板进行总结),但是灵活性和便捷性就大打折扣了。
但初期,我对于递归还是不太熟练,具体表现在看代码觉得非常简单,自己一写就被绕进了逻辑的弯绕之中。每次写递归之前,要明确递归的三部曲:
1.明确递归函数的返回值和参数
2.明确终止条件
3.明确单层递归的逻辑
明确以上三部曲之后,递归就变得清晰许多了。
而递归中往往是隐藏着回溯思想的,废话先打住,从几个题中感受这种回溯的思想:
273.二叉树的所有路径
这题一看肯定会想到用dfs无脑做,确实思路也非常清晰,就是时间性能不佳
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res=new ArrayList<>();
if(root==null) return res;
dfs(root,"",res);
return res;
}
void dfs(TreeNode root,String path,List<String> res){
if(root==null) return;
//如果是叶子结点
if(root.left==null&&root.right==null){
res.add(path+root.val);
return;
}
//如果不是叶子结点,则继续访问其子结点
dfs(root.left, path+root.val+"->",res);
dfs(root.right,path+root.val+"->",res);
}
}
但不妨可以试试回溯法,以避免每次寻找路径都是自顶向下查找
class Solution {
public List<String> binaryTreePaths(TreeNode root) {
List<String> res = new ArrayList<>();
if (root == null) {
return res;
}
List<Integer> paths = new ArrayList<>();
traversal(root, paths, res);
return res;
}
private void traversal(TreeNode root, List<Integer> paths, List<String> res) {
paths.add(root.val);
// 叶子结点
if (root.left == null && root.right == null) {
// 输出
StringBuilder sb = new StringBuilder();
for (int i = 0; i < paths.size() - 1; i++) {
sb.append(paths.get(i)).append("->");
}
sb.append(paths.get(paths.size() - 1));
res.add(sb.toString());
return;
}
if (root.left != null) {
traversal(root.left, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
if (root.right != null) {
traversal(root.right, paths, res);
paths.remove(paths.size() - 1);// 回溯
}
}
}
此处有一个需要注意的细节,将临时List中结点取出并加上箭头的步骤中,应该使用StringBuffer/StringBuilder类而不是String类,当对字符串进行修改的时候,StringBuffer 和 StringBuilder 类的对象能够被多次的修改,并且不产生新的未使用对象。而在程序不要求线程安全(即一般情况下),优先使用StringBuilder型。
513.找树左下角值
这题用层序遍历来做是最好想到的,无脑套模板即可。但同样也是时间性能不如回溯法
class Solution {
int maxlen=0;
int leftvalue;
public int findBottomLeftValue(TreeNode root) {
leftvalue=root.val;
findLeft(root,1);
return leftvalue;
}
void findLeft(TreeNode root,int leftlen){
if(root==null) return;
if(root.left==null &&root.right==null){
if(leftlen>maxlen){
leftvalue=root.val;
maxlen=leftlen;
}
}
if(root.left!=null)
findLeft(root.left,leftlen+1);
/*此处即隐含着回溯思想,可理解为:
leftlen=leftlen+1;
findLeft(root.left,leftlen);
leftlen=leftlen-1;
*/
if(root.right!=null)
findLeft(root.right,leftlen+1);
}
}
关于递归函数什么时候要有返回值,什么时候不能有返回值的情况:
如果需要遍历整棵树,递归函数就不能有返回值。
如果需要遍历某一条固定路线,递归函数就一定要有返回值!
112.路径之和
这题我想的是,使用回溯法遍历每条路径,将每条路径之和储存在Hashset中,最后判断其中是否存在targetSum。
class Solution {
public boolean hasPathSum(TreeNode root, int targetSum) {
if(root==null) return false;
Set<Integer> s=new HashSet<>();
findway(root,s,root.val);
if(s.contains(targetSum))
return true;
else return false;
}
void findway(TreeNode root,Set s,int sum){
if(root.left==null &&root.right==null)
s.add(sum);
if(root.left!=null)
findway(root.left,s,sum+(root.left).val);//回溯思想的体现
if(root.right!=null)
findway(root.right,s,sum+(root.right).val);
}
}
113.路径总和 II
此题思路和上题是类似的
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int targetsum) {
List<List<Integer>> res = new ArrayList<>();
if (root == null) return res; // 非空判断
List<Integer> path = new ArrayList<>();
findway(root, targetsum, res, path);
return res;
}
public void findway(TreeNode root, int targetsum, List<List<Integer>> res, List<Integer> path) {
path.add(root.val);
// 遇到了叶子节点时
if (root.left == null && root.right == null) {
// targetsum 每次减去根节点的值,以避免进行判断
if (targetsum - root.val == 0) {
res.add(new ArrayList<>(path));//此处需重点注意
}
return; // 如果和不为 targetsum,返回
}
if (root.left != null) {
findway(root.left, targetsum - root.val, res, path);
path.remove(path.size() - 1); // 回溯
}
if (root.right != null) {
findway(root.right, targetsum - root.val, res, path);
path.remove(path.size() - 1); // 回溯
}
}
}
但此处有个隐藏的坑困扰了我很久,就是res.add(new ArrayList<>(path))这行,我起初一直用的是res.add(path),始终无法通过全部样例。其原因是:
1.res.add(list)是浅拷贝,将res尾部指向了path地址,后续path的内容变化会导致放入res中的元素发生变化。
2.res.add(new ArrayList<>()) 是深拷贝,开辟一个独立地址,地址中存放的内容为path这一list链表,后续path的变化不会影响到res。
小结:
回溯主要是一种思想,往往隐藏在递归之中,主要还是要捋清递归的三部曲以及其逻辑,这样才不会陷入思路混乱。
参考资料:代码随想录
res.add(new ArrayList<>(path))和res.add(path)的区别_Edmundshi的博客-CSDN博客