C++刷题笔记(六)——二分模板/快速幂/欧几里得

1.二分法模板

参考资料:二分查找模板总结

二分法的应用场景,主要可以分为以下四种:

  1. 数组有序,且不包含重复元素
  2. 数组有序,但包含重复元素
  3. 数组部分有序,且不包含重复元素
  4. 数组部分有序,且包含重复元素

1.1 针对情况一:标准二分查找

这也是最简单的一种情况,STL库里的二分实现也是基于这种标准的实现

但缺点是无法处理元素重复的问题 

class BinarySearch {
    public int search(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        while (left <= right) {
            int mid = left + ((right - left) >> 1);
            if (nums[mid] == target) return mid;
            else if (nums[mid] > target) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }
        return -1;
    }
}

1.2 针对情况二三四:二分查找边界

以下查找边界的方法当然也可以用来处理 情况一

1.2.1 寻找区间左边界

例如在情况二下需要寻找 重复 x 的区间

以下模板中的,寻找第一个 >= x 的数,即是在寻找 重复 x 的 区间的左边界

// 寻找第一个大于等于x的数
int lower_bound(int target){
    int l = 0,int r = n - 1;
    while(l < r){
        int mid = l + (r-l)/2;//防止溢出
        // 说明第一个 >=x的元素一定在mid或mid左边
        // 右边界变小,往左半区间寻找
        // ( check(mid) )
        if(num[mid] >= target){
            r = mid;
        }
        else l = mid + 1;
    }
    // l = r时退出循环 返回哪个都行
    return l;
}

在整个数组中都未找到一个 >= x 的数时,r 和 l 最终都会落在数组的最末位( 即下标 n - 1 处)

一个小细节,当取 r = n 时,以上二分的主体过程并不会受影响

改变的只有 r 和 l 的最终位置:数组的最末位的下一位

(但这种写法数组容易越界 需要注意打补丁)

但这个方法针对 lc 35: 搜索插入位置   的情景就非常方便,例如样例3

1.2.2 寻找区间右边界

例如 找到满足 >=nums[0] 的右边界值,相较于以上寻找左边界的模板,有以下三个变化:
1. mid 的取值        2.满足check(mid)条件下的 l 与 r 的取值

        int l = 0, r = n - 1;
        // 找到满足 >=nums[0]的右边界值
        while(l < r){
            // 变化1* mid值+1
            int mid = l + r + 1 >> 1;
            // 变化2* if-else中的l/r 取值改变
            // check(mid)
            if(nums[mid] >= nums[0])  l = mid;
            else  r = mid - 1;
        }
        return l;

不过所有求区间右边界的问题,都可以转化为求相邻区间的左边界问题,所得答案-1即可

所以上例也可以转化为求 < nums[0] 的左边界 这样写:

        while(l < r){
            int mid = l + r >> 1;
            if(nums[mid] < nums[0])  r = mid;
            else  l = mid + 1;
        }

基于以上板子,可以完成模板题:Acwing 789 数的范围

参考题解:AcWing 789. 数的范围(二分终极分析!) - AcWing

1.3 模板应用题

leetcode 33

33. 搜索旋转排序数组

class Solution {
public:
    int search(vector<int>& nums, int target) {
        int n = nums.size();
        if(n == 1)  return nums[0] == target ?0:-1;
        int l = 0, r = n - 1;
        // 找到满足 >=nums[0]的右边界值
        while(l < r){
            int mid = l + r + 1 >> 1;
            if(nums[mid] >= nums[0])  l = mid;
            else  r = mid - 1;
        }

        if(target >= nums[0]){
            l = 0;
        }else{
            l = l + 1;r = n - 1;
        }
        // 找到 >=target的左边界值(第一个>=target的数)
        while(l < r){
            int mid = l + r >> 1;
            if(nums[mid] >= target)  r = mid;
            else l = mid + 1;
        }
        return nums[r] == target ? r : -1;
    }
};

思想参考题解:【宫水三叶】严格 O(logN),一起看清二分的本质

「二分」不是单纯指从有序数组中快速找某个数,这只是「二分」的一个应用。

(找到某个数的二分思想实际上是:左段满足<=x,右段不满足)

「二分」的本质是两段性,并非单调性。只要一段满足某个性质,另外一段不满足某个性质,就可以用「二分」。

经过旋转的数组,显然前半段满足 >= nums[0],而后半段不满足 >= nums[0]。我们可以以此作为依据,通过「二分」找到旋转点。

0.png

leetcode 300 

lc 300. 最长递增子序列  的 O(nlogn) 解法,也是 Acwing 896

这题的暴力解法为 Acwing 895,时间复杂度为O(n^2)

暴力的状态定义为: dp[i]:以第i个数结尾的序列的上升子序列的最长长度

但是我们发现一个问题,例如 nums[1] = 1,nums[3] = 3  dp[1] = dp[3] = 2 时,

当上升子序列长度相等时,肯定是优先使用更小的数结尾的状态去递推下一个状态

根本不会用到dp[3],这是一个无效的状态,也就是我们的优化方向

依然着眼于某个上升子序列的 结尾的元素,如果 已经得到的上升子序列的结尾的数越小,那么遍历的时候后面接上一个数,会有更大的可能构成一个长度更长的上升子序列。

既然结尾越小越好,我们可以记录 在长度固定的情况下,结尾最小的那个元素的数值,这样定义以后容易得到「状态转移方程」

所以我们定义 tail [ i ]:长度为i的 最长上升子序列 的集合中,最小的尾部元素值

来源题解:动态规划 (包含O (N log N) 解法的状态定义以及解释) 

tail 数组是一个严格单调递增的数组,证明过程如上↑

遍历原序列数组,对每一个元素 通过二分法在tail中寻找第一个比num更大的位置

找到了,就在该位置使用num进行更新,变得更小

没找到,就将该num接到tail的后面

可观看上面题解的动图进一步理解,代码如下:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        // tail[i]:长度为i的子序列的集合中,最小的尾部元素值
        int tail[n+1];
        int len = 0;
        for(int i = 0; i < n; i++){
            int l = 0,r = len;
            // 由....得:tail数组为单调数组
            // 通过二分法 tail中寻找第一个比num更大的位置
            // (应该是第一个大于等于的 因为子序列严格单调递增 若只是大于会破坏这一性质)
            // 尝试将这个位置的tail换成num
            // 若找到 在tail指针处换成num[l]
            // 未找到时 l/r指针则指向同一个位置 tail_len
            // 把nums[i]插到当前tail的后一位即可
            // (所以这就是为什么令r=len的原因:
            // 若[l,r]中没有找到时 指针将直接指向r+1,但这种写法数组容易越界 需要打补丁)
            while(l < r){
                int mid = l + (r-l)/2;
                if(tail[mid] >= nums[i])  r = mid;
                else  l = mid + 1;
            }
            tail[l] = nums[i];
            if(len == l) len++;
        }
        return len;
    }
};

leetcode 162

lc 162. 寻找峰值

由题可得,假设数组-1和n处为负无穷,这隐含了数组一定有峰值 

我们假设最朴素的情况,只出现一个峰值,示意图由下所示

而这个情况我们如何使用二分呢,我们不应该死盯着数组的单调性来想二分,要想清楚的是:二分本质上是基于二段性,check(mid)是判断满足某个性质的,我们要求的峰值点,是左段满足单调递增性质,右段不满足这个性质的;所以可以基于这个特性来进行二分。

而题目提到不会有nums[i] != nums[i + 1]这种情况出现,我们也不用纠结使用左边界还是右边界的模板。

二分的本质是「二段性」而非「单调性」,而经过本题,我们进一步发现「二段性」还能继续细分,不仅仅只有满足 01 特性(满足/不满足)的「二段性」可以使用二分,满足 1? 特性(一定满足/不一定满足)也可以二分

 src:【宫水三叶の相信科学系列】关于能够「二分」的两点证明

 1.4 浮点数二分:求根问题

模板来自y总,其中eps精度一般设置为1e-6 ~ 1e-8都能满足需求

double bsearch(double l, double r) {
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求, 一般比所求精度高 2
    while (r - l > eps) {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

模板题:Acwing 790 

int main(){
    double x;
    cin>>x;
    // 根据数据范围+-1e4
    // 可知 实际上取到+-22即可
    double l =-30,r = 30;
    // 1e-8为精度
    while(r-l>1e-8){
        double mid= (l+r)/2;
        if(mid*mid*mid>=x) r = mid;
        else l = mid;
    }
    printf("%.6lf\n",l);
}

力扣中也有一道相似思想的题: 

2.快速幂模板

2.1 模板解释

快速幂中其实也蕴含着二分思想,但我认为直接使用二进制数来理解更加直观(目前如此,以后再填坑)

将所求幂的指数化为二进制形式,从低位到高位依次处理,这篇题解的解释非常直观

 tips:res = res * a % p、 a = a * a % p中的取模运算是不会对最后res产生影响的
这样做目的是为了防止计算过程中数值太大导致溢出。
例如这样就不影响2^13%p = (2^8%p) * (2^4%p) * (2^1%p)

 模板题在Acwing 875上,模板如下:

int qml(int a,int b,int p){
    int res = 1;
    while(b){
        // 当b的最末位为1时 res*a
        if(b & 1)
            res = (LL)res * a % p;
        a = (LL)a * a % p;
        // 实际上是b的二进制位为1的地方需要*a
        b >>= 1; // 每次循环右移一位
    }
    return res;
}

2.2 模板应用题

直接套板子:Acwing 89

基于快速幂思想在大数乘法中的运用:Acwing 90. 64位 整数乘法

需要注意边界与特定测试数据:lc 500 Pow(x,n)

3. 欧几里得算法 gcd

实际用的是来自古籍中的辗转相除法,有以下三种实现方式,模板题:Acwing 872

1.使用STL库的gcd函数,注意是有两条下划线

__gcd(a,b)

2.迭代法:

    while(b){  // 也可优化成(a % b)
        int temp = a % b;
        a = b;
        b = temp;
    }

 3.递归法:

int gcd(int x,int y){
    if(x % y == 0) return y;
    return gcd(y,x % y);
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值