双指针进阶,接雨水,缺失的第一个整数问题
一,接雨水
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
力扣链接
初步分析得出的算法:
class Solution {
public int trap(int[] height) {
int sum=0;
int ans=0;
int[] left=new int[height.length];
int[] right=new int[height.length];
left[0]=height[0];
right[height.length-1]=height[height.length-1];
for(int i=1;i<=height.length-1;i++){
left[i]=height[i]>left[i-1]?height[i]:left[i-1];
}
for(int i=height.length-2;i>=0;i--){
right[i]=height[i]>right[i+1]?height[i]:right[i+1];
}
for(int i=1;i<=height.length-2;i++){
if(Math.min(left[i-1],right[i+1])-height[i]>0){
ans=Math.min(left[i-1],right[i+1])-height[i];
}else{
ans=0;
}
sum=sum+ans;
}
return sum;
}
}
具体分析:
1,
考虑下标为5的位置
要想水不漏,水就需要左边和右边高度最高的柱子,来给他兜底。
左边是红色的柱子,右边是绿色柱子,然后两者取较小值,再减去5位置自身的高度,这就是下标为5的位置可以装的最多水。
把每一个下标累加,就是总水量。
2,
如何记录i位置左边最高柱子,和右边最高柱子?就是这段代码
这是左
for(int i=1;i<=height.length-1;i++){
left[i]=height[i]>left[i-1]?height[i]:left[i-1];
}
这是右
for(int i=height.length-2;i>=0;i--){
right[i]=height[i]>right[i+1]?height[i]:right[i+1];
}
3,
这是累加
for(int i=1;i<=height.length-2;i++){
if(Math.min(left[i-1],right[i+1])-height[i]>0){
ans=Math.min(left[i-1],right[i+1])-height[i];
}else{
ans=0;
}
sum=sum+ans;
}
双指针版本优化:
代码原理思考
动态规划里面,我们从暴力递归
到挂缓存表的递归
到从底到顶的动态规划
最后到没有数组的动态规划
为什么可以这样优化????
是不是我们每次只用有限个数组里面的量,用完了就不再用了
因此,就可以用有限个变量,滚动更新
上面的优化思维可以悟一下
详细可以看我的动态规划,感悟每一步是如何优化的
一维动态规划
下面的双指针版本的代码:
class Solution {
public int trap(int[] height) {
int l=1;
int r=height.length-2;
int lmax=height[0];
int rmax=height[height.length-1];
int sum=0;
while(l<=r){
if(lmax<rmax){
sum=sum+Math.max(0,lmax-height[l]);
lmax=lmax>height[l]?lmax:height[l];
l++;
}else{
sum=sum+Math.max(0,rmax-height[r]);
rmax=rmax>height[r]?rmax:height[r];
r--;
}
}
return sum;
}
}
解释:
1,
对于i位置的水量,我们其实只需要,left[i-1]和right[i+1]即可
因此可以设置两个变量,lmax和rmax,初始值为
height[0]和height[height.length-1]
再设置两个指针,l和r,初始值是1和height.length-2,从两边逼近
2,
对于下面代码的解释:
if(lmax<rmax){
sum=sum+Math.max(0,lmax-height[l]);
lmax=lmax>height[l]?lmax:height[l];
l++;
}else{
sum=sum+Math.max(0,rmax-height[r]);
rmax=rmax>height[r]?rmax:height[r];
r--;
}
由于我们是:先找出两边各自最大值,再比较得出两个最大值的较小值。
1,
如果lmax<rmax,我们考虑l位置的水量
如果lmax>rmax,我们考虑r位置的水量
这是是考虑l位置,
2,
对于l位置水量,需要left[l-1]和right[l+1]的较小值
3,
lmax等于left[l-1],虽然rmax不等于right[r+1],
但是,rmax肯定是小于等于right[l+1]的
lmax已经比rmax小了
4,
那么lmax肯定也比right[l+1]小
所以,lmax就是较小值
5,
得出l位置水量,并且累加即可
if(lmax<rmax){
sum=sum+Math.max(0,lmax-height[l]);
lmax=lmax>height[l]?lmax:height[l];
l++;
}
二,缺失的第一个整数问题
给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。
示例 1:
输入:nums = [1,2,0]
输出:3
解释:范围 [1,2] 中的数字都在数组中。
示例 2:
输入:nums = [3,4,-1,1]
输出:2
解释:1 在数组中,但 2 没有。
示例 3:
输入:nums = [7,8,9,11,12]
输出:1
解释:最小的正数 1 没有出现。
源码
class Solution {
public int firstMissingPositive(int[] nums) {
int l=0;
int r=nums.length;
int temp=0;
while(l<r){
if(nums[l]==l+1){
l++;
}else if(nums[l]<=l||nums[l]>=r+1||nums[nums[l]-1]==nums[l]){
r--;
temp=nums[l];
nums[l]=nums[r];
nums[r]=nums[l];
}else{
temp=nums[nums[l]-1];
nums[nums[l]-1]=nums[l];
nums[l]=temp;
}
}
return l+1;
}
}
思路:
1,
如果可以0位置放1
1位置放2
2位置放3
3位置放4
以此类推,直到l位置无法放l+1,返回l+1
2,
对于无法放置的数,准备一个垃圾区,通过一个r指针,来划分垃圾区
满足以下条件中的至少一个就为垃圾区
nums[l]<=l
nums[l]>=r+1
nums[nums[l]-1]==nums[l]
3,
把垃圾数放进垃圾区
r--;
temp=nums[l];
nums[l]=nums[r];
nums[r]=nums[l];
4,
如果不是垃圾
就进行这一步
temp=nums[nums[l]-1];
nums[nums[l]-1]=nums[l];
nums[l]=temp;