双指针进阶,接雨水,缺失的第一个整数问题,力扣算法

双指针进阶,接雨水,缺失的第一个整数问题

一,接雨水

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

在这里插入图片描述

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:

输入:height = [4,2,0,3,2,5]
输出:9
力扣链接
初步分析得出的算法:

class Solution {
    public int trap(int[] height) {
        int sum=0;
        int ans=0;
        int[] left=new int[height.length];
        int[] right=new int[height.length];
        left[0]=height[0];
        right[height.length-1]=height[height.length-1];
        for(int i=1;i<=height.length-1;i++){
            left[i]=height[i]>left[i-1]?height[i]:left[i-1];
        }
        for(int i=height.length-2;i>=0;i--){
            right[i]=height[i]>right[i+1]?height[i]:right[i+1];
        }
        for(int i=1;i<=height.length-2;i++){
            if(Math.min(left[i-1],right[i+1])-height[i]>0){
                ans=Math.min(left[i-1],right[i+1])-height[i];
            }else{
                ans=0;
            }
            sum=sum+ans;
        }
        return sum;
    }
}

具体分析:
1,
考虑下标为5的位置
在这里插入图片描述
要想水不漏,水就需要左边和右边高度最高的柱子,来给他兜底。
左边是红色的柱子,右边是绿色柱子,然后两者取较小值,再减去5位置自身的高度,这就是下标为5的位置可以装的最多水。
把每一个下标累加,就是总水量。
2,
如何记录i位置左边最高柱子,和右边最高柱子?就是这段代码
这是左

for(int i=1;i<=height.length-1;i++){
            left[i]=height[i]>left[i-1]?height[i]:left[i-1];
        }

这是右

for(int i=height.length-2;i>=0;i--){
            right[i]=height[i]>right[i+1]?height[i]:right[i+1];
        }

3,
这是累加

for(int i=1;i<=height.length-2;i++){
            if(Math.min(left[i-1],right[i+1])-height[i]>0){
                ans=Math.min(left[i-1],right[i+1])-height[i];
            }else{
                ans=0;
            }
            sum=sum+ans;
        }

双指针版本优化:

代码原理思考
动态规划里面,我们从暴力递归
到挂缓存表的递归
到从底到顶的动态规划
最后到没有数组的动态规划
为什么可以这样优化????
是不是我们每次只用有限个数组里面的量,用完了就不再用了
因此,就可以用有限个变量,滚动更新

上面的优化思维可以悟一下
详细可以看我的动态规划,感悟每一步是如何优化的
一维动态规划


下面的双指针版本的代码:

class Solution {
    public int trap(int[] height) {
        int l=1;
        int r=height.length-2;
        int lmax=height[0];
        int rmax=height[height.length-1];
        int sum=0;
        while(l<=r){
            if(lmax<rmax){
                sum=sum+Math.max(0,lmax-height[l]);
                lmax=lmax>height[l]?lmax:height[l];
                l++;
            }else{
                sum=sum+Math.max(0,rmax-height[r]);
                rmax=rmax>height[r]?rmax:height[r];
                r--;
            }
        }
        return sum;
    }
}

解释:

1,

对于i位置的水量,我们其实只需要,left[i-1]和right[i+1]即可

因此可以设置两个变量,lmax和rmax,初始值为
height[0]和height[height.length-1]
再设置两个指针,l和r,初始值是1和height.length-2,从两边逼近
2,
对于下面代码的解释:

if(lmax<rmax){
                sum=sum+Math.max(0,lmax-height[l]);
                lmax=lmax>height[l]?lmax:height[l];
                l++;
            }else{
                sum=sum+Math.max(0,rmax-height[r]);
                rmax=rmax>height[r]?rmax:height[r];
                r--;
            }

由于我们是:先找出两边各自最大值,再比较得出两个最大值的较小值。


在这里插入图片描述
1,
如果lmax<rmax,我们考虑l位置的水量
如果lmax>rmax,我们考虑r位置的水量
这是是考虑l位置,
2,
对于l位置水量,需要left[l-1]和right[l+1]的较小值
3,
lmax等于left[l-1],虽然rmax不等于right[r+1],
但是,rmax肯定是小于等于right[l+1]的
lmax已经比rmax小了
4,
那么lmax肯定也比right[l+1]小
所以,lmax就是较小值
5,
得出l位置水量,并且累加即可

if(lmax<rmax){
                sum=sum+Math.max(0,lmax-height[l]);
                lmax=lmax>height[l]?lmax:height[l];
                l++;
            }

二,缺失的第一个整数问题

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数。

请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。

示例 1:

输入:nums = [1,2,0]
输出:3
解释:范围 [1,2] 中的数字都在数组中。
示例 2:

输入:nums = [3,4,-1,1]
输出:2
解释:1 在数组中,但 2 没有。
示例 3:

输入:nums = [7,8,9,11,12]
输出:1
解释:最小的正数 1 没有出现。

力扣链接


源码

class Solution {
    public int firstMissingPositive(int[] nums) {
        int l=0;
        int r=nums.length;
        int temp=0;
        while(l<r){
            if(nums[l]==l+1){
                l++;
            }else if(nums[l]<=l||nums[l]>=r+1||nums[nums[l]-1]==nums[l]){
                r--;
                temp=nums[l];
                nums[l]=nums[r];
                nums[r]=nums[l];
            }else{
                temp=nums[nums[l]-1];
                nums[nums[l]-1]=nums[l];
                nums[l]=temp;
            }
        }
        return l+1;
    }
}

思路:
1,
如果可以0位置放1
1位置放2
2位置放3
3位置放4
以此类推,直到l位置无法放l+1,返回l+1
2,
对于无法放置的数,准备一个垃圾区,通过一个r指针,来划分垃圾区
满足以下条件中的至少一个就为垃圾区

nums[l]<=l
nums[l]>=r+1
nums[nums[l]-1]==nums[l]

3,
把垃圾数放进垃圾区

r--;
temp=nums[l];
nums[l]=nums[r];
nums[r]=nums[l];

4,
如果不是垃圾
就进行这一步

temp=nums[nums[l]-1];
nums[nums[l]-1]=nums[l];
nums[l]=temp;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值