机器学习&深度学习
文章平均质量分 79
furoto_
这个作者很懒,什么都没留下…
展开
-
阅读记录【IEEE TMC】FairMove: A Data-Driven Vehicle Displacement System for Jointly Optimizing Profit Effi
提出FairMove系统,解决电动租赁车辆在充电过程中的挑战,可以有效地提高EFHV车队的利润效率。原创 2024-06-24 20:33:35 · 917 阅读 · 0 评论 -
阅读记录【强化学习多智能体鲁棒性】ROBUST MULTI-AGENT REINFORCEMENT LEARNING CONSIDERING STATE UNCERTAINTIES
考虑状态不稳定的鲁棒多智能体强化学习。将问题建模为MG-SPA问题,并提出了基于Q学习的RMAQ算法和面向高维的RMAAC算法原创 2024-06-24 20:26:57 · 893 阅读 · 0 评论 -
阅读记录 【NeurIPS2021】Federated Multi-Task Learning under a Mixture of Distributions
智能手机和物联网设备生成的数据量不断增加,推动了联邦学习 (FL) 的发展,联邦学习是一种用于机器学习模型的设备上协作训练的框架。FL 的最初工作重点是学习在客户端之间具有良好平均性能的单个全局模型,但由于本地数据分布固有的异质性,全局模型对于给定客户端可能会任意糟糕。联合多任务学习(MTL)方法可以通过制定适当的惩罚优化问题来学习个性化模型。惩罚项可以捕获个性化模型之间的复杂关系,但回避有关本地数据分布的明确统计假设。原创 2023-11-21 18:19:37 · 717 阅读 · 0 评论 -
阅读记录【arXiv2020】 Adaptive Personalized Federated Learning
对联邦学习算法个性化程度的研究表明,只有最大化全局模型的性能才会限制局部模型的个性化能力。在本文中,我们提倡自适应个性化联合学习(APFL)算法,其中每个客户端将训练其本地模型,同时为全局模型做出贡献。我们推导出局部模型和全局模型混合的泛化界限,并找到最佳混合参数。我们还提出了一种有效通信的优化方法来协作学习个性化模型并分析其在平滑强凸和非凸设置中的收敛性。大量的实验证明了我们的个性化模式的有效性,以及已建立的泛化理论的正确性。原创 2023-11-21 16:23:36 · 393 阅读 · 0 评论 -
阅读记录【PMLR2023】The Aggregation–Heterogeneity Trade-off in Federated Learning
The Aggregation–Heterogeneity Trade-off in Federated Learning原创 2023-11-16 18:39:53 · 188 阅读 · 0 评论 -
研究一个算法收敛性的意义
研究一个算法收敛性的意义原创 2023-06-29 15:20:10 · 1341 阅读 · 0 评论 -
python — cnn+opencv 识别车牌
cnn+opencv+pyrhon识别车牌原创 2022-06-15 00:21:28 · 791 阅读 · 0 评论 -
MATLAB — 利用SVM(支持向量机)进行图像分割/提取
matlab 使用svm提取图像原创 2022-04-26 01:14:04 · 6958 阅读 · 10 评论 -
MATLAB — 安装libsvm支持向量机工具箱
matlab中libsvm的安装原创 2022-04-24 17:04:29 · 2137 阅读 · 0 评论