阅读记录 【NeurIPS2021】Federated Multi-Task Learning under a Mixture of Distributions
智能手机和物联网设备生成的数据量不断增加,推动了联邦学习 (FL) 的发展,联邦学习是一种用于机器学习模型的设备上协作训练的框架。FL 的最初工作重点是学习在客户端之间具有良好平均性能的单个全局模型,但由于本地数据分布固有的异质性,全局模型对于给定客户端可能会任意糟糕。联合多任务学习(MTL)方法可以通过制定适当的惩罚优化问题来学习个性化模型。惩罚项可以捕获个性化模型之间的复杂关系,但回避有关本地数据分布的明确统计假设。
原创
2023-11-21 18:19:37 ·
717 阅读 ·
0 评论