Ubuntu查询已经安装的软件


Ubuntu查询已经安装的软件,由于同时使用源码和apt-get安装了相同库的不同版本,在开发的过程中可能引起问题。使用如下命令查询已经安装的软件包。


dpkg --get-selections


### 变分推断中的重参数化技巧 #### 概念解释 重参数化技巧是一种用于改进梯度估计的方法,在变分自编码器(VAEs)和其他基于随机变量的模型中广泛应用。该技术允许通过对输入噪声而不是网络权重施加扰动来简化梯度计算,从而使得能够更有效地利用自动微分工具进行端到端的学习[^3]。 #### 技巧原理 具体来说,对于服从特定分布(如高斯分布)的一个随机变量 \( z \),其传统表示方式为从给定的概率密度函数直接抽样得到样本值。然而,在实践中,这会阻碍有效的反向传播机制因为无法穿过随机节点传递梯度。为了避免这个问题,引入了重参数化公式: \[ z = μ + σ * ε \] 这里 \( ε \sim N(0, I) \), 即标准正态分布;\(μ\) 和 \(σ\) 则是由神经网络预测出来的均值和标准差。这样做的好处是可以把原本不可导的操作转换成了可导的形式,即让采样的过程依赖于外部固定的随机源而不再是内部不确定性的源头[^4]。 #### Python代码实现示例 下面是一个简单的Python代码片段展示了如何在一个假设的VAE框架内实施上述提到的重参数化操作: ```python import torch from torch import nn class VAE(nn.Module): def __init__(self): super().__init__() self.fc_mu = nn.Linear(in_features=..., out_features=...) self.fc_logvar = nn.Linear(in_features=..., out_features=...) def reparameterize(self, mu, log_var): std = torch.exp(0.5*log_var) eps = torch.randn_like(std) return mu + eps*std def forward(self, x): # 前向传播逻辑... mu = self.fc_mu(x) log_var = self.fc_logvar(x) z = self.reparameterize(mu, log_var) # 解码部分... return ... ``` 此段代码定义了一个名为`reparameterize` 的辅助函数用来执行实际的重参数化步骤,并将其集成到了整个前馈过程中去。 #### 应用场景 除了在构建高效的生成对抗网络(GANs)之外,重参数化还被广泛应用于各种涉及连续型隐含变量的任务当中,比如图像生成、自然语言处理以及时间序列分析等领域内的贝叶斯优化问题解决上。特别是在大规模分布式环境下训练复杂结构化的概率图模型时表现尤为突出[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枫竹梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值