BZOJ2741: 【FOTILE模拟赛】L
可持久化Tire·分块
题解:
首先做一下XOR前缀和,把问题变成“选择一个区间里的两个数,使他们的XOR值最大”。
考虑可持久化Tire,但是它只能解决“一个区间里找一个数使得它与给定数的XOR值最大”,就是必须枚举一个,log的时间找另一个。
考虑分块,另
begini
表示第i块的第一个的位置,
设
f[i][j]
表示从区间
[begini,j−1]
这个区间中选择一个使其与
j
这个元素XOR的值最大是多少。
设
这样对于一个询问,直接查一下
g[[belong[l]+1][r]
,剩下的部分
[l,begin[belong[l]+1]−1]
每一个都在Tire上查一下即可。
Code:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define D(x) cout<<#x<<" = "<<x<<" "
#define E cout<<endl
using namespace std;
const int N = 13005;
const int LOG = 30;
const int SQRT = 116;
int lch[N*(LOG+1)],rch[N*(LOG+1)],cnt[N*(LOG+1)],root[N],sz;
int bsz,bnum,belong[N],begin[SQRT];
int n,m,f[SQRT][N],g[SQRT][N],a[N],sum[N];
void clone(int x,int t){
lch[x]=lch[t]; rch[x]=rch[t]; cnt[x]=cnt[t];
}
void insert(int &x,int t,int d,int bit=LOG){
x=++sz; clone(x,t); cnt[x]++;
if(bit<0) return;
if((d>>bit)&1) insert(rch[x],rch[t],d,bit-1);
else insert(lch[x],lch[t],d,bit-1);
}
int query(int a,int b,int d,int bit=LOG){
if(bit<0) return 0;
int lsz=cnt[lch[b]]-cnt[lch[a]];
int rsz=cnt[rch[b]]-cnt[rch[a]];
if((d>>bit)&1){
if(lsz) return query(lch[a],lch[b],d,bit-1)+(1<<bit);
else return query(rch[a],rch[b],d,bit-1);
}
else{
if(rsz) return query(rch[a],rch[b],d,bit-1)+(1<<bit);
else return query(lch[a],lch[b],d,bit-1);
}
}
void init(){
bsz=sqrt(n); bnum=(n-1)/bsz+1;
for(int i=1;i<=n;i++) belong[i]=(i-1)/bsz+1;
for(int i=1;i<=bnum;i++) begin[i]=(i-1)*bsz+1;
for(int i=1;i<=bnum;i++){
for(int j=begin[i]+1;j<=n;j++){
f[i][j]=query(root[begin[i]-1],root[j-1],sum[j]);
}
}
for(int i=1;i<=bnum;i++){
for(int j=begin[i]+1;j<=n;j++){
g[i][j]=max(g[i][j-1],f[i][j]);
}
}
}
int solve(int l,int r){
int ans=0;
if(belong[l]==belong[r]){
for(int i=l;i<=r;i++){
ans=max(ans,query(root[l-1],root[r],sum[i]));
}
}
else{
ans=g[belong[l]+1][r];
for(int i=l;i<begin[belong[l]+1];i++){
ans=max(ans,query(root[l-1],root[r],sum[i]));
}
}
return ans;
}
int main(){
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
scanf("%d%d",&n,&m); n++;
for(int i=2;i<=n;i++) scanf("%d",&a[i]);
sum[1]=0; for(int i=2;i<=n;i++) sum[i]=sum[i-1]^a[i];
for(int i=1;i<=n;i++) insert(root[i],root[i-1],sum[i]);
init();
// for(int i=1;i<=bnum;i++){
// for(int j=begin[i]+1;j<=n;j++){
// D(begin[i]); D(j); D(f[i][j]); D(g[i][j]); E;
// }
// }
int ans=0, x,y,l,r;
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
l=((long long)x+ans)%(n-1)+1;
r=((long long)y+ans)%(n-1)+1;
if(l>r) swap(l,r); r++;
ans=solve(l,r);
printf("%d\n",ans);
}
}