BZOJ2741: 【FOTILE模拟赛】L

BZOJ2741: 【FOTILE模拟赛】L

可持久化Tire·分块

题解:

首先做一下XOR前缀和,把问题变成“选择一个区间里的两个数,使他们的XOR值最大”。

考虑可持久化Tire,但是它只能解决“一个区间里找一个数使得它与给定数的XOR值最大”,就是必须枚举一个,log的时间找另一个。

考虑分块,另 begini 表示第i块的第一个的位置,
f[i][j] 表示从区间 [begini,j1] 这个区间中选择一个使其与 j 这个元素XOR的值最大是多少。
g[i][j]表示从 [begini,j] 中任选两个,其XOR值最大是多少,易得: g[i][j]=max(f[i][j],g[i][j1]) .
这样对于一个询问,直接查一下 g[[belong[l]+1][r] ,剩下的部分 [l,begin[belong[l]+1]1] 每一个都在Tire上查一下即可。

Code:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define D(x) cout<<#x<<" = "<<x<<"  "
#define E cout<<endl
using namespace std;
const int N = 13005;
const int LOG = 30;
const int SQRT = 116;

int lch[N*(LOG+1)],rch[N*(LOG+1)],cnt[N*(LOG+1)],root[N],sz;
int bsz,bnum,belong[N],begin[SQRT];
int n,m,f[SQRT][N],g[SQRT][N],a[N],sum[N];

void clone(int x,int t){
    lch[x]=lch[t]; rch[x]=rch[t]; cnt[x]=cnt[t];
}

void insert(int &x,int t,int d,int bit=LOG){
    x=++sz; clone(x,t); cnt[x]++;
    if(bit<0) return;
    if((d>>bit)&1) insert(rch[x],rch[t],d,bit-1);
    else insert(lch[x],lch[t],d,bit-1);
}

int query(int a,int b,int d,int bit=LOG){
    if(bit<0) return 0;
    int lsz=cnt[lch[b]]-cnt[lch[a]];
    int rsz=cnt[rch[b]]-cnt[rch[a]];
    if((d>>bit)&1){
        if(lsz) return query(lch[a],lch[b],d,bit-1)+(1<<bit);
        else return query(rch[a],rch[b],d,bit-1);
    }
    else{
        if(rsz) return query(rch[a],rch[b],d,bit-1)+(1<<bit);
        else return query(lch[a],lch[b],d,bit-1);
    }
}

void init(){
    bsz=sqrt(n); bnum=(n-1)/bsz+1;
    for(int i=1;i<=n;i++) belong[i]=(i-1)/bsz+1;
    for(int i=1;i<=bnum;i++) begin[i]=(i-1)*bsz+1;
    for(int i=1;i<=bnum;i++){
        for(int j=begin[i]+1;j<=n;j++){
            f[i][j]=query(root[begin[i]-1],root[j-1],sum[j]);
        }
    }
    for(int i=1;i<=bnum;i++){
        for(int j=begin[i]+1;j<=n;j++){
            g[i][j]=max(g[i][j-1],f[i][j]);
        }
    }
}

int solve(int l,int r){
    int ans=0;
    if(belong[l]==belong[r]){
        for(int i=l;i<=r;i++){
            ans=max(ans,query(root[l-1],root[r],sum[i]));
        }
    }
    else{
        ans=g[belong[l]+1][r];
        for(int i=l;i<begin[belong[l]+1];i++){
            ans=max(ans,query(root[l-1],root[r],sum[i]));
        }
    }
    return ans;
}

int main(){
    freopen("a.in","r",stdin);
    freopen("a.out","w",stdout);
    scanf("%d%d",&n,&m); n++;
    for(int i=2;i<=n;i++) scanf("%d",&a[i]);
    sum[1]=0; for(int i=2;i<=n;i++) sum[i]=sum[i-1]^a[i];
    for(int i=1;i<=n;i++) insert(root[i],root[i-1],sum[i]);
    init(); 

//  for(int i=1;i<=bnum;i++){
//      for(int j=begin[i]+1;j<=n;j++){
//          D(begin[i]); D(j); D(f[i][j]); D(g[i][j]); E;
//      }
//  }

    int ans=0, x,y,l,r;
    for(int i=1;i<=m;i++){
        scanf("%d%d",&x,&y);
        l=((long long)x+ans)%(n-1)+1;
        r=((long long)y+ans)%(n-1)+1;
        if(l>r) swap(l,r);  r++;
        ans=solve(l,r);
        printf("%d\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值