4571: [Scoi2016]美味
主席树·位运算 的 奇妙世界
题解:
i∈[L,R] ,最大化: Xxor(A[i]+Y)
如果我们先不考虑 i∈[L,R] 和 +Y 呢?
一个按位的二叉tire树可以解决问题。
每次根据 X 的当前位决定优先向左还是向右,如果优先的一边没有点则走另一边。
如果实际走的是优先选的那一边,
ans=(ans<<1)+1
,否则ans=ans<<1
。加上
i∈[L,R] 的限制?换上可持久化tire树即可。
考虑 +Y ?
可持久化tire树就不行了。。。
引用自:http://blog.csdn.net/neither_nor/article/details/51378123,有些许修改。
考虑可持久化trie其实可以等价为一颗上限为 2k−1 的主席树,在trie上确定一位其实相当于将答案的区间缩小的一半,也就是在主席树上向下走一层。
当所有数加上 Y 之后,我们在主席树上走的时候看优先走的那一边有木有点就不能直接调用
sz[son[x][0/1]]
,但是因为所有数都被加了,所以我们其实要查询的是优先走的区间向前窜Y 位之后的区间有没有数,这样的话每次走的时候在主席树上重新查[l-Y,mid-Y]
或者[mid+1-Y,r-Y]
来判断应该往哪边走即可,复杂度多了个log,但是n=2*10^5,不虚。
讲真,我调了2h+
Code:
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#define D(x) cout<<#x<<" = "<<x<<" "
#define E cout<<endl
using namespace std;
const int LOG = 18;
const int N = 1<<LOG;
int n,m,X,Y,L,R,ans,a[N],mx;
int lch[N*20],rch[N*20],cnt[N*20],sz,root[N];
void clone(int x,int t){
lch[x]=lch[t]; rch[x]=rch[t]; cnt[x]=cnt[t];
}
void insert(int &x,int t,int l,int r,int p){
x=++sz; clone(x,t); cnt[x]++;
if(l!=r){
int mid=(l+r)>>1;
if(p<=mid) insert(lch[x],lch[t],l,mid,p);
else insert(rch[x],rch[t],mid+1,r,p);
}
}
int query(int a,int b,int l,int r,int ql,int qr){
if(ql<=l && r<=qr){ return cnt[b]-cnt[a]; }
else{
int mid=(l+r)>>1, ans=0;
if(ql<=mid) ans+=query(lch[a],lch[b],l,mid,ql,qr);
if(qr>mid) ans+=query(rch[a],rch[b],mid+1,r,ql,qr);
return ans;
}
}
void solve(int l,int r,int bit){
// D(l); D(r); D(bit); D(ans); E;
if(l!=r){
int mid=(l+r)>>1;
if(X&(1<<bit)){
// D(max(l-Y,0)); D(max(mid-Y,0)); D(query(root[L-1],root[R],0,mx,max(l-Y,0),max(mid-Y,0))); E;
if(query(root[L-1],root[R],0,mx,max(l-Y,0),max(mid-Y,0))){ ans=(ans<<1)+1; solve(l,mid,bit-1); }
else{ ans=ans<<1; solve(mid+1,r,bit-1); }
}
else{
// D(max(mid+1-Y,0)); D(max(r-Y,0)); D(query(root[L-1],root[R],0,mx,max(mid+1-Y,0),max(r-Y,0))); E;
if(query(root[L-1],root[R],0,mx,max(mid+1-Y,0),max(r-Y,0))){ ans=(ans<<1)+1; solve(mid+1,r,bit-1); }
else{ ans=ans<<1; solve(l,mid,bit-1); }
}
}
}
int main(){
freopen("a.in","r",stdin);
scanf("%d%d",&n,&m);
mx=(1<<LOG)-1; //D(mx); E;
for(int i=1;i<=n;i++){ scanf("%d",a+i); }
for(int i=1;i<=n;i++){ insert(root[i],root[i-1],0,mx,a[i]); }
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&X,&Y,&L,&R);
// D(X); D(Y); E;
ans=0; solve(0,mx,LOG-1); printf("%d\n",ans);
}
}