word ladder

Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:

  1. Only one letter can be changed at a time.
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

Note:

  • Return 0 if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example 1:

Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

Output: 5

坑的地方在于  : 

for(int i=0;i<q.size();i++)

for(int i=q.size()-1;i>=0;i--)

这两种看似写法一样 但是内部在执行时 队列长度发生变化 循环一执行次数也发生变化  而循环二只会初始化一次 值不会发生变化  

/* 由beginword 变到endword 每次中间单词必须要在单词表中
 * 求变化最少的长度 (其实单词和终止单词也算)
 * 这个过程像迷宫搜索 只不过不是在四个方向而是在26个方向 即 对每个字符可能情况搜索
 * 由于是求最短路径 因此用记录层数的bfs 可以用哨兵或者记录队列长度的方法
 *
 * */
class Solution {
public:
    int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
        // 用set记录单词便于查找
        unordered_set<string> dict(wordList.begin(), wordList.end());
        if(dict.count(endWord)==0)  return 0;
        queue<string> q;
        q.push(beginWord);
        int h=0;
        while(!q.empty()){
            // 以下循环每次处理一层
            int size = q.size();
            for(int i=0;i<size;i++){
                string tmp = q.front();q.pop();
                if(tmp==endWord)    return h+1;
                for(int j=0;j<tmp.size();j++){
                    string news=tmp; // 重要
                    for(char c='a';c<='z';c++){
                        news[j] = c;
                        if(news==tmp) continue;
                        auto it = dict.find(news);
                        if(it!=dict.end()){
                            dict.erase(news);
                            //cout<<news<<" ";
                            q.push(news);
                        }
                    }
                }
            }
            h++;
            //cout<<"one layer";
        }
        return 0;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值