BZOJ 3456 城市规划

提示:
1.这种题目都是先推出公式然后想办法优化求解

代码后详解

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <vector>
#include <deque>
#include <queue>
#include <list>
#include <stack>
#include <algorithm>
#include <cassert>
#include <map>
typedef long long ll;

using namespace std;
const int maxn = 5e5;
const int modu = 1004535809;

ll powerMod(ll a , ll n)
{
    ll res = 1;
    while(n)
    {
        if(n & 1) (res *= a) %= modu;
        (a *= a) %= modu;
        n >>= 1;
    }
    return res;
}

void exGcd(ll a , ll b , ll &d , ll &x , ll &y)
{
    if(!b) d = a , x = 1 , y = 0;
    else 
    {
        exGcd(b , a%b , d , y , x);
        y -= a/b*x;
    }
}

ll rev(ll a)
{
    ll d , x , y;
    exGcd(a , modu , d , x , y);
    return (x%modu + modu) % modu;
}

int n;
ll a[maxn] , ra[maxn] , b[maxn] , f[maxn] , x[maxn] , y[maxn] , z[maxn];
ll g[maxn] , rg[maxn];

void FNT(ll* a , int n , bool r = false)
{
    for(int i=0,j=0;i<n;i++)
    {
        if(j > i) swap(a[i] , a[j]);
        int k = n;
        while(j & (k >>= 1)) j &= ~k;
        j |= k;
    }

    for(int i=1;i<n;i <<= 1)
    {
        ll wn = g[i];
        if(r) wn = rg[i];

        for(int j=0;j<n;j += i << 1)
        {
            ll w = 1;
            for(int k=j;k<j+i;k++)
            {
                ll x = a[k];
                ll y = (a[k+i] * w) % modu;
                a[k] = (x + y) % modu;
                a[k+i]=(x - y + modu) % modu;
                (w *= wn) %= modu;
            }
        }
    }
    if(r) for(int i=0;i<n;i++) (a[i] *= rev(n)) %= modu;
}

int m;
void multiple(int n)
{
    m = 2;
    while(m <= n*2) m *= 2;
    FNT(x , m);
    FNT(y , m);
    for(int i=0;i<m;i++) z[i] = (x[i] * y[i])%modu;
    FNT(z , m , true);
}

void solve(int l , int r)
{
    if(l == r) f[l] = (b[l] + modu - (a[l-1]*f[l])%modu) % modu;
    else 
    {
        int mid = (l+r)/2;

        solve(l , mid);

        int cnt = 0;
        for(int i=0;i< r-l;i++) x[cnt++] = (b[1+i] * ra[1+i]) % modu;
        for(int i=0;i<=mid-l;i++) y[i] = (f[l+i] * ra[l+i-1]) % modu;
        multiple(max(r-mid , mid-l+1));
        for(int i=mid+1;i<=r;i++) (f[i] += z[i-l-1]) %= modu;
        for(int i=0;i<=m;i++) x[i] = y[i] = z[i] = 0;

        solve(mid+1 , r);
    }
}

int main()
{
    #ifndef ONLINE_JUDGE
    freopen("in","r",stdin);
    #endif

    cin>>n;

    ra[0] = a[0] = 1;
    for(int i=1;i<=n;i++) g[i] = powerMod(3 , (modu-1)/i/2) , rg[i] = rev(g[i]);
    for(int i=1;i<=n;i++) a[i] = (a[i-1] * i) % modu , ra[i] = rev(a[i]);
    for(int i=0;i<=n;i++) b[i] = powerMod(2 , 1LL*i*(i-1)/2);
    solve(1 , n);
    cout<<f[n]<<endl;
    return 0;
}

Wi=2C2i

Fn=Wni=1nCi1n1FiWni

首先这个由这个公式可以看出, Fn 和前面所有项都有关,可以用  CDQ  处理
但是仅仅这样做是不够的,因为我们无法累加 [l,mid] 的整体贡献

我们调整一下这个式子:

Fn=Wn(n1)!×i=1nFi(i1)!Wni(ni)!

这就是我们熟悉的卷积形式了,然后愉快的上FNT即可。

几点常熟的优化:
一开始我T了一发,手动测试极限数据大概要跑10S , 于是开始卡常。
1.如果能够预处理的一定预处理,比如逆元等等
2.FNT中的序列尽可能的短

不过对于不很熟悉FNT的同学,可以先写写不带优化的版本,然后逐步优化,这样会流畅一些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值