提示:
1.这种题目都是先推出公式然后想办法优化求解
代码后详解
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <vector>
#include <deque>
#include <queue>
#include <list>
#include <stack>
#include <algorithm>
#include <cassert>
#include <map>
typedef long long ll;
using namespace std;
const int maxn = 5e5;
const int modu = 1004535809;
ll powerMod(ll a , ll n)
{
ll res = 1;
while(n)
{
if(n & 1) (res *= a) %= modu;
(a *= a) %= modu;
n >>= 1;
}
return res;
}
void exGcd(ll a , ll b , ll &d , ll &x , ll &y)
{
if(!b) d = a , x = 1 , y = 0;
else
{
exGcd(b , a%b , d , y , x);
y -= a/b*x;
}
}
ll rev(ll a)
{
ll d , x , y;
exGcd(a , modu , d , x , y);
return (x%modu + modu) % modu;
}
int n;
ll a[maxn] , ra[maxn] , b[maxn] , f[maxn] , x[maxn] , y[maxn] , z[maxn];
ll g[maxn] , rg[maxn];
void FNT(ll* a , int n , bool r = false)
{
for(int i=0,j=0;i<n;i++)
{
if(j > i) swap(a[i] , a[j]);
int k = n;
while(j & (k >>= 1)) j &= ~k;
j |= k;
}
for(int i=1;i<n;i <<= 1)
{
ll wn = g[i];
if(r) wn = rg[i];
for(int j=0;j<n;j += i << 1)
{
ll w = 1;
for(int k=j;k<j+i;k++)
{
ll x = a[k];
ll y = (a[k+i] * w) % modu;
a[k] = (x + y) % modu;
a[k+i]=(x - y + modu) % modu;
(w *= wn) %= modu;
}
}
}
if(r) for(int i=0;i<n;i++) (a[i] *= rev(n)) %= modu;
}
int m;
void multiple(int n)
{
m = 2;
while(m <= n*2) m *= 2;
FNT(x , m);
FNT(y , m);
for(int i=0;i<m;i++) z[i] = (x[i] * y[i])%modu;
FNT(z , m , true);
}
void solve(int l , int r)
{
if(l == r) f[l] = (b[l] + modu - (a[l-1]*f[l])%modu) % modu;
else
{
int mid = (l+r)/2;
solve(l , mid);
int cnt = 0;
for(int i=0;i< r-l;i++) x[cnt++] = (b[1+i] * ra[1+i]) % modu;
for(int i=0;i<=mid-l;i++) y[i] = (f[l+i] * ra[l+i-1]) % modu;
multiple(max(r-mid , mid-l+1));
for(int i=mid+1;i<=r;i++) (f[i] += z[i-l-1]) %= modu;
for(int i=0;i<=m;i++) x[i] = y[i] = z[i] = 0;
solve(mid+1 , r);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
#endif
cin>>n;
ra[0] = a[0] = 1;
for(int i=1;i<=n;i++) g[i] = powerMod(3 , (modu-1)/i/2) , rg[i] = rev(g[i]);
for(int i=1;i<=n;i++) a[i] = (a[i-1] * i) % modu , ra[i] = rev(a[i]);
for(int i=0;i<=n;i++) b[i] = powerMod(2 , 1LL*i*(i-1)/2);
solve(1 , n);
cout<<f[n]<<endl;
return 0;
}
令
Wi=2C2i
Fn=Wn−∑i=1nCi−1n−1∗Fi∗Wn−i
首先这个由这个公式可以看出, Fn 和前面所有项都有关,可以用 CDQ分治 处理
但是仅仅这样做是不够的,因为我们无法累加 [l,mid] 的整体贡献
我们调整一下这个式子:
Fn=Wn−(n−1)!×∑i=1nFi(i−1)!∗Wn−i(n−i)!
这就是我们熟悉的卷积形式了,然后愉快的上FNT即可。
几点常熟的优化:
一开始我T了一发,手动测试极限数据大概要跑10S , 于是开始卡常。
1.如果能够预处理的一定预处理,比如逆元等等
2.FNT中的序列尽可能的短
不过对于不很熟悉FNT的同学,可以先写写不带优化的版本,然后逐步优化,这样会流畅一些