想法很好的一道题目。
提示:
1. 可以写写暴力 ,正解的思路和暴力相似,暴力启发正解
2. 本题的数据感觉只有第一个和最后一个有用的样子,其他的数据点都是鼓励乱搞?
代码后详细说明:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 510;
const int ps[]={2,3,5,7,11,13,17,19} , full = 1<<8;
vector<int> s[maxn];
int n , p , f[full][full] , g[2][full][full] , res;
int main(int argc, char *argv[]) {
cin>>n>>p;
for(int i=2,x;i<=n;i++)
{
x = i;
int sum = 0;
for(int j=0;j<8;j++) while(x % ps[j] == 0) x /= ps[j] , sum |= 1<<j;
if(x == 1) s[i].push_back(sum);
else s[x].push_back(sum);
}
f[0][0] = 1;
for(int i=2;i<=n;i++) if(s[i].size())
{
for(int j=0;j<full;j++) for(int k=0;k<full;k++) g[0][j][k] = g[1][j][k] = f[j][k];
for(int l=0;l<s[i].size();l++) for(int j=full-1;~j;j--) for(int k=full-1;~k;k--)
(g[0][j|s[i][l]][k] += g[0][j][k]) %= p,
(g[1][j][k|s[i][l]] += g[1][j][k]) %= p;
for(int j=0;j<full;j++) for(int k=0;k<full;k++) f[j][k] = ((g[0][j][k] + g[1][j][k] - f[j][k])%p + p) % p;
}
for(int j=0;j<full;j++) for(int k=0;k<full;k++) if((j & k) == 0) (res += f[j][k]) %= p;
cout<<res<<endl;
return 0;
}
分层背包 + 状态压缩
一个比较显然的暴力思路是纪录当前状态下
F[s1][s2]
表示一个质数集合
s1∈第一个人
, 而另一个质数集合
s2∈第二个人
的方案数。
那么问题的瓶颈在哪里? 需要压缩的质数太多啦! 第二个级别都过不掉……
转移已经不能优化啦,我们只能选择简化状态!
一个想法是: 我们尽量去压缩那些经常出现的质数,像
2,3,5…
那么对于一个不怎么出现的质数,例如
97
,我们怎么办呢?
观察到跟
97
有瓜葛的就只有,
97,97×2,97×4,97×4,97×5
这样的5个数。我们想办法把它们领出来单独做一个背包。
问题来了, 一个数不能包含多个我们所说的不怎么经常出现的质数,不然无法分组,或者说,无法分层。
我们想办法让每个数有一个固定的分组,一个粗略的思路是:按照这个数包含的最大的质数分组。换言之, 如果一个质数在某个数的质因数分解中不是最大的,那么这玩意就要被压缩。那么我们就需要压缩
≤500‾‾‾‾√
的质数,也就是
2,3,5,7,11,13,17,19
这8个质数啦。
按照分组, 逐次做背包即可。
注意: 如果一个数只包含这8个基础质数的话,那么我们把这个数单另分为一组。