04 第一章课后习题-答案在147页

 均值:

input=np.array([92,94,103,105,106])
np.mean(input)
100.0

子样方差:

np.dot((input-mean_number),(input-mean_number))/5

 34.0

X=np.array([1,3,6,26])
N=np.array([8,40,10,2])


def get_mean(X,N):
    sum=0
    length=0
    for i in range(len(X)):
        sum = sum + X[i]*N[i]
        length=length+N[i]
    return sum/length


def get_variance(X,N):
    D_value=np.array([])
    length=0
    for i in arange(len(N)):
        length=length+N[i]
        for j in arange(N[i]):
            D_value = np.append(D_value,(get_mean(X,N)-X[i])**2)
            pass
        pass
    return np.sqrt(np.sum(D_value)/length)

得到平均值:4.0

得到标准差:4.320493798938574

得到方差:18.666666666666668

 

 顺序统计量:

array_number=np.array([-2.1,3.2,0,-0.1,1.2,-4,2.22,2.01,1.2,-0.1,3.21,-2.1,0])
array_number=np.sort(array_number)
array_number
array([-4.  , -2.1 , -2.1 , -0.1 , -0.1 ,  0.  ,  0.  ,  1.2 ,  1.2 ,
        2.01,  2.22,  3.2 ,  3.21])

 中位数

len(array_number)
13

 

Me=array_number[int((len(array_number)+1)/2)]
Me

 极差:7.21

array_number[-1]-array_number[0]

插入2.7之后的中位数:0.6

array_number=np.append(array_number,2.7)
array_number=np.sort(array_number)
len(array_number)
n=len(array_number)
left=array_number[int(n/2)-1]
right=array_number[int(n/2)]
Me=(right+left)*0.5

X^2=X_1^2+X_2^2+,...,+X_n^2

Y^2=X_{n+1}^2+X_{n+2}^2+,...,+X_{n+m}^{2}

由卡方分布的定义:

X+Y=X_1^2+X_2^2+,...,+X_n^2+X_{n+1}^2+X_{n+2}^2+,...,+X_{n+m}^{2}

满足卡方分布的定义 上面的式子成立

\overline X_1 =(X_1+X_2+...+X_n)/n

\overline X_2 =(X_{n+1}+X_{n+2}+...+X_{n+m})/m

两个式子合并之后:

X_1+X_2+...+X_n+X_{n+1}+X_{n+2}+...+X_{n+m}/(m+n)=\overline X

公式的推导,运算大家慢慢计算。

 

 我们先把表复制过来:

查表自己查 老火得很

正态分布:u_{0.005}=表上找不到0.005或者0.995所以找不到 u_{0.975}=-1.96

卡方分布:

\chi _{(0.05)}^29=16.919

 \chi _{(0.975)}^210=3.25

 t_{0.05}(14)=1.761

t_{0.025}(8)=2.306

 F_{0.05}(10,9)=3.02

F_{0.975}(10,9)=1/3.78=0.2645502645502646

 

F  n2=10 n1=5

补充:正态分布的可加性:

X\sim N(u_1,(q_1^2),Y\sim N(u_2,(q_2^2)

Z=aX+bY\sim N(au_1+bu_2,a^2q_1^2+b^2q_2^2)

带入此式子:

Y_1=X_1+X_2+X_3

Y_1\sim N (0,3)

Y_2=X_4+X_5+X_6

Y_2\sim N (0,3)

此时我们只需要把Y_1Y_2标准正太化即可满足卡方分布

正态分布标准化:

X\sim N(p,k^2)为非正态分布,则Z=(X-p)/k\sim N(0,1)为标准正态分布.
统计量期望值后除以方差.

此时我们只需要除以\sqrt{3}

\frac{Y_1}{\sqrt{3}}\sim N(0,1)

\frac{Y_2}{\sqrt{3}}\sim N(0,1)

现在我们可以看出当C=1/3可以办到

 我们需要看一下非标准的正态分布张啥样

 N(0,σ^2)的密度函数为

得到f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{(-\frac{x^2}{2\sigma^2})}

再来看看卡方分布的密度函数

 答案:

 这个证明推导不出来 有点难度 ,跳过,不过花个半天应该可以推导出来 ,太麻烦了 算求了

 

 第一个式子满足t分布,自由度为n

第二个式子满足F分布,自由度为1,n

t分布的式子

 F分布的式子

 

 X^2满足卡方分布 此时自由度为1

所以 此式子成立

 

我们先找到近似计算公式:

 带入a=0.01 n=90

 这是什么题喔 主要式查表查不到u_{0.01},如果查到了带入即可 我们可以找规律来估算大概等于2.3

np.sqrt(180)*2.3+90

估算答案:120.8577380894971

 由于

 \frac{\overline X-\mu}{2}\sim N(0,1)

要求P(\overline X-\mu )> 3

则我们需要求P(\frac{\overline X-\mu}{2} )> 1.5

我们需要查表u_a=1.5时候 P0.9335 由于表上我们弄的下册分位数 ,所以我们需要1-0.9335=0.0665 

由于我们求的式绝对值 则需要乘以2

最后结果约为:0.130

我们需要将X做标准化转换即

\frac{X_i}{0.3}\sim N(0,1)

\sum_{i=1}^{n}(\frac{X_i}{0.3})^2服从卡方分布

即: \frac{100}{9}\sum_{i=1}^{n}{X_i}^2服从卡方分布

转换为

P\left \{ \frac{100}{9}\sum_{i=1}^{n}{X_i}^2> 16 \right \} 自由度为10 我们查表得到的概率与等于0.10

 

 我们需要带入如下公式进行计算:

 

  

 \frac{(\overline X -\overline Y)}{1.225}\sim N(0,1)​​​​​​​

先求\frac{(\overline X -\overline Y)}{1.225}>0.225的概率

我们找到小于0.225的概率为0.589

大于0.225的概率为0.411

我们求的式绝对值 综上 结果为0.822

结果不一样 我怀疑式哪里做错了 操

  • 9
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值