20240104-最长上升子序列

文章介绍了使用动态规划解决最长严格递增子序列问题的方法,通过定义dp数组表示以nums[i]结尾的最长递增子序列长度,状态转移方程利用nums[i]大于nums[j]时的最长递增子序列可能增加的情况。算法的时间复杂度为O(n^2),空间复杂度为O(n)。
摘要由CSDN通过智能技术生成

题目要求

给定一个整数数组nums,返回最长严格递增子序列的长度。

思路

动态规划,五部曲:

  1. 确定dp数组以及下标的含义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
  2. 状态转移方程:位置i的最长升序子序列等于j从0到i-1各个位置的最长升序子序列 + 1 的最大值。if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1); 注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值
  3. dp[i]的初始化:dp[i]起始大小都至少是1。
  4. 遍历顺序:从前向后遍历
  5. 举例推导

11月底学完之后目前又有点忘了,这一个月经历了各种被拒绝,也去外边玩儿了一圈。要继续努力提高自己代码算法、概率论、写策略的能力。上边的推导过程是我重新学习之后边看边写的,代码如下:

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp(nums.size()+1, 1);
        if (nums.size() <= 1) return nums.size();
        int result = 0;
        for (int i = 1; i < nums.size(); ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] > nums[j]) {
                    dp[i] = max(dp[j] + 1, dp[i]);
                } else {
                    dp[i] = dp[i];
                }
                if (dp[i] > result) result = dp[i];
            }
        }
    return result;
    }
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n)
  • 7
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值