来自未来的体育科学家给你两个整数数组 energyDrinkA
和 energyDrinkB
,数组长度都等于 n
。这两个数组分别代表 A、B 两种不同能量饮料每小时所能提供的强化能量。
你需要每小时饮用一种能量饮料来 最大化 你的总强化能量。然而,如果从一种能量饮料切换到另一种,你需要等待一小时来梳理身体的能量体系(在那个小时里你将不会获得任何强化能量)。
返回在接下来的 n
小时内你能获得的 最大 总强化能量。
注意 你可以选择从饮用任意一种能量饮料开始。
示例 1:
输入:energyDrinkA = [1,3,1], energyDrinkB = [3,1,1]
输出:5
解释:
要想获得 5 点强化能量,需要选择只饮用能量饮料 A(或者只饮用 B)。
示例 2:
输入:energyDrinkA = [4,1,1], energyDrinkB = [1,1,3]
输出:7
解释:
- 第一个小时饮用能量饮料 A。
- 切换到能量饮料 B ,在第二个小时无法获得强化能量。
- 第三个小时饮用能量饮料 B ,并获得强化能量。
思路
根据题目的描述,很自然的选择采用动态规划的思想解决本题。递归三部曲:
- dpA[i] 表示在第 i 小时饮用 A 饮料的最大能量,dpB[i] 表示在第 i 小时饮用 B 饮料的最大能量
- 初始条件:dpA[0] = A[0],dpB[0] = B[0]
- 状态转移方程:dpA[i] = max(dpA[i-1] + A[i], dpB[i-2] + A[i]),dpB[i]同理
最终答案的返回结果为
代码(C++)
class Solution {
public:
long long maxEnergyBoost(vector<int>& energyDrinkA, vector<int>& energyDrinkB) {
int n = energyDrinkA.size();
vector<long long> dpA(n+1, 0), dpB(n+1, 0);
dpA[0] = energyDrinkA[0];
dpA[1] = energyDrinkA[1] + dpA[0];
dpB[0] = energyDrinkB[0];
dpB[1] = energyDrinkB[1] + dpB[0];
for (int i = 2; i < n; ++i) {
dpA[i] = std::max(dpA[i-1] + energyDrinkA[i], dpB[i-2] + energyDrinkA[i]);
dpB[i] = std::max(dpB[i-1] + energyDrinkB[i], dpA[i-2] + energyDrinkB[i]);
}
return std::max(dpA[n-1], dpB[n-1]);
}
};
代码(Python)
class Solution:
def maxEnergyBoost(self, energyDrinkA: List[int], energyDrinkB: List[int]) -> int:
n = len(energyDrinkA)
dpA, dpB = n * [0], n * [0]
dpA[0] = energyDrinkA[0]
dpA[1] = dpA[0] + energyDrinkA[1]
dpB[0] = energyDrinkB[0]
dpB[1] = dpB[0] + energyDrinkB[1]
for i in range(2, n):
dpA[i] = max(dpA[i-1] + energyDrinkA[i], dpB[i-2] + energyDrinkA[i])
dpB[i] = max(dpB[i-1] + energyDrinkB[i], dpA[i-2] + energyDrinkB[i])
return max(dpA[n-1], dpB[n-1])