神经网络的最小单位-神经元
输入:x1,x2,1(x可以有多个,作为特征,1可有可无,作为偏置调整)
计算:
第一步:加权求和w1x1+w2x2+1*b
第二步:将第一步结果输入到激活函数得到输出。(激活函数的用途)
目的:
调整w1,w2…wn,b得到一个最佳的值(可以让相对更多的输入可以达到预期的输出)
多输出神经元
例如,在三分类的时候增加一个神经元。
输出
二分类与多分类的区别就是添加神经元,并且在最后添加归一化操作。
目的
将损失函数降到最低。
损失函数为真实值和预测值之间的差值。
在二分类中,一个分类为1的数据经过预测得到的预测结果为0.8(0-1之间),认为预测结果为1这个类别,损失函数为(1-0.8)=0.2
在三分类中,预测结果为(0.1,0.4,0.5)真是结果为第三个类别,我们将类别用one-hot编码表示,那么真实的结果为(0,0,1),损失函数就可以计算为abs(0.1-0)+abs(0.4-0)+abs(0.5-1)=0.9