神经元

本文介绍了神经网络的基本单位——神经元,包括输入、加权求和与激活函数的作用。讨论了二分类与多分类的区别,特别是在多分类中如何通过添加神经元并使用归一化操作。同时阐述了损失函数的概念,用于衡量预测值与真实值之间的差距,以优化网络权重和偏差。
摘要由CSDN通过智能技术生成

神经网络的最小单位-神经元

输入:x1,x2,1(x可以有多个,作为特征,1可有可无,作为偏置调整)
计算:
第一步:加权求和w1x1+w2x2+1*b
第二步:将第一步结果输入到激活函数得到输出。(激活函数的用途)
目的:
调整w1,w2…wn,b得到一个最佳的值(可以让相对更多的输入可以达到预期的输出)
在这里插入图片描述

多输出神经元

在这里插入图片描述
例如,在三分类的时候增加一个神经元。

输出

二分类与多分类的区别就是添加神经元,并且在最后添加归一化操作。

目的

将损失函数降到最低。
损失函数为真实值和预测值之间的差值。
在二分类中,一个分类为1的数据经过预测得到的预测结果为0.8(0-1之间),认为预测结果为1这个类别,损失函数为(1-0.8)=0.2
在三分类中,预测结果为(0.1,0.4,0.5)真是结果为第三个类别,我们将类别用one-hot编码表示,那么真实的结果为(0,0,1),损失函数就可以计算为abs(0.1-0)+abs(0.4-0)+abs(0.5-1)=0.9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值