神经元与神经网络结构

本文深入探讨了神经元的生物结构及其在人工神经网络中的模拟,包括轴突、树突和突触的作用。同时,介绍了神经网络的几种典型结构,如单层感知器、前馈型、内层互联和反馈型网络,揭示了它们的工作原理和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工神经网络(Artificial Neural Network,即ANN )

神经元模型

1.生物神经元
这里写图片描述

神经元由一个细胞体和突两部分组成。突分两类,轴突和树突。
树突轴突共同作用,实现神经元之间的信息传递。

轴突的末端与树突进行进行信号传递的界面成为突触,通过突触向其他神经元发送信息。学习发生在突触附近,而且突触把经过一个神经元轴突的脉冲转化为下一个神经元的兴奋信号或抑制信号。

对某些突触的刺激促使神经元触发,只有神经元所有输入的总效应达到阈值电平,它才开始工作。

2.人工神经元

这里写图片描述

在简单的人工神经网络模型中,用权和乘法器模拟突触特性,用加法器模拟树突的互连作用,而且与阈值比较来模拟细胞体内电化学作用产生的开关特性。

xi——表示来自其他神经元的输入
wi——表示相应的网络连接权重(大的正权对应强的兴奋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值