Python解决DP问题之背包问题

才开始学DP,先写两种最简单的背包吧:

动态规划的核心思想:避免重复计算,要联系之前已经计算过的最优值。

一、0-1背包

        0-1背包的题意是指:有n样物品需要被放进背包,背包可容纳的质量为w,背包内含物品的总价为v。第i样物品的质量为wi,价值为vi。需要尽量利用w,来使v最大。因此在规划时,每样物品只有带或不带两个选项。

        因为有求最大v,因此采用DP算法。

        根据列表的思想,应该建立二维数组dp,代表共有i样物品时,背包最大容量为j时,背包内物品的最大价值。

        写出DP状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-wi]+vi)  (j>wi)

意为:在不装入第i件,或装入第i件物品之间选择价值高的一种方案。        

        若要优化空间复杂度,则使用一维数组,但注意第二重循环时,只能逆向循环,避免覆盖已优化的值。

二、完全背包

        完全背包的题意是指:有n种物品需要被放进背包,背包可容纳的质量为w,背包内含物品的总价为v。第i种物品的质量为wi,价值为vi。需要尽量利用w,来使v最大。和0-1背包不同的是,每种物品都有无数件ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值