Python解决DP问题之背包问题

才开始学DP,先写两种最简单的背包吧:

动态规划的核心思想:避免重复计算,要联系之前已经计算过的最优值。

一、0-1背包

        0-1背包的题意是指:有n样物品需要被放进背包,背包可容纳的质量为w,背包内含物品的总价为v。第i样物品的质量为wi,价值为vi。需要尽量利用w,来使v最大。因此在规划时,每样物品只有带或不带两个选项。

        因为有求最大v,因此采用DP算法。

        根据列表的思想,应该建立二维数组dp,代表共有i样物品时,背包最大容量为j时,背包内物品的最大价值。

        写出DP状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-wi]+vi)  (j>wi)

意为:在不装入第i件,或装入第i件物品之间选择价值高的一种方案。        

        若要优化空间复杂度,则使用一维数组,但注意第二重循环时,只能逆向循环,避免覆盖已优化的值。

二、完全背包

        完全背包的题意是指:有n种物品需要被放进背包,背包可容纳的质量为w,背包内含物品的总价为v。第i种物品的质量为wi,价值为vi。需要尽量利用w,来使v最大。和0-1背包不同的是,每种物品都有无数件ÿ

背包问题是一个经典的组合优化问题,可以使用动态规划来解决。下面是一个简单的 Python 示例代码,用于解决 0-1 背包问题: ```python def knapsack(weights, values, capacity): n = len(weights) dp = [[0] * (capacity + 1) for _ in range(n + 1)] for i in range(1, n + 1): for j in range(1, capacity + 1): if weights[i - 1] <= j: dp[i][j] = max(values[i - 1] + dp[i - 1][j - weights[i - 1]], dp[i - 1][j]) else: dp[i][j] = dp[i - 1][j] selected_items = [] w, c = n, capacity while w > 0 and c > 0: if dp[w][c] != dp[w - 1][c]: selected_items.append(w - 1) c -= weights[w - 1] w -= 1 return dp[n][capacity], selected_items # 示例用法 weights = [2, 3, 4, 5] values = [3, 4, 5, 6] capacity = 8 max_value, selected_items = knapsack(weights, values, capacity) print("Maximum value:", max_value) print("Selected items:", selected_items) ``` 在上面的代码中,我们定义了一个名为 `knapsack` 的函数,它接受三个参数:`weights` 是物品的重量列表,`values` 是物品的价值列表,`capacity` 是背包的容量。函数使用动态规划的方法计算出背包能够容纳的最大价值,并返回最大价值以及被选择的物品的索引列表。 在示例中,我们定义了一个背包容量为 8,有 4 个物品的例子。每个物品有对应的重量和价值。运行代码后,将输出最大价值为 11,并且被选择的物品的索引列表为 [3, 2],表示选择了第 4 个物品和第 3 个物品。你可以根据自己的需求调整 `weights`、`values` 和 `capacity` 的值来尝试不同的背包问题实例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值