动态规划——使用python解决01背包问题

本文探讨了如何使用Python进行字符串切片和动态规划技术,提供了一个实例,展示了如何在给定字符串和背包问题中找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

什么是01背包问题?

题目:

输入格式:

输出格式:

代码实现:

代码执行示例:

代码解析:


什么是01背包问题?

        01背包问题是一个经典的组合优化问题,通常用于描述如下情境:假设有一个背包,它能够承受一定的重量上限(即背包容量),同时有一组物品,每件物品有自己的重量和价值。问题的目标是决定如何选择装入背包的物品,使得装入的物品的总价值最大,并且不能超过背包的承重上限。

        在01背包问题中,每件物品要么被完全装入背包(即选中),要么不被装入背包。这就是为什么它被称为“01”背包问题,其中“01”表示对每个物品的选择只有两种状态。这种限制条件使得问题具有一定的复杂性,需要采用动态规划等方法来解决。

         因此,01背包问题是一个经典的组合优化问题,它在实际生活中有着广泛的应用,例如在资源分配、投资决策等领域中都能够找到具体的应用案例。

题目:

       假设你有一个背包,它的容量是有限的。有一些物品,每个物品都有自己的重量和价值。你的任务是选择物品,将它们放入背包中,使得背包的重量不超过其容量,同时最大化背包中物品的总价值。

示例:

        假设你有一个承重量为W的背包,同时有n件物品和它们的重量数组weights[]以及价值数组values[]。请编写一个程序,找出能够装入背包的最大总价值,并输出这个最大总价值。

输入格式:

输入物品的数量:n

输入第一个物品的重量和价值(请使用空格分隔开):x1  y1

输入第二个物品的重量和价值(请使用空格分隔开):x2  y2

输入第三个物品的重量和价值(请使用空格分隔开):x3  y3

.....................

输入第 n 个物品的重量和价值(请使用空格分隔开):xn  yn

输出格式:

最大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值