目录
什么是01背包问题?
01背包问题是一个经典的组合优化问题,通常用于描述如下情境:假设有一个背包,它能够承受一定的重量上限(即背包容量),同时有一组物品,每件物品有自己的重量和价值。问题的目标是决定如何选择装入背包的物品,使得装入的物品的总价值最大,并且不能超过背包的承重上限。
在01背包问题中,每件物品要么被完全装入背包(即选中),要么不被装入背包。这就是为什么它被称为“01”背包问题,其中“01”表示对每个物品的选择只有两种状态。这种限制条件使得问题具有一定的复杂性,需要采用动态规划等方法来解决。
因此,01背包问题是一个经典的组合优化问题,它在实际生活中有着广泛的应用,例如在资源分配、投资决策等领域中都能够找到具体的应用案例。
题目:
假设你有一个背包,它的容量是有限的。有一些物品,每个物品都有自己的重量和价值。你的任务是选择物品,将它们放入背包中,使得背包的重量不超过其容量,同时最大化背包中物品的总价值。
示例:
假设你有一个承重量为W的背包,同时有n件物品和它们的重量数组weights[]以及价值数组values[]。请编写一个程序,找出能够装入背包的最大总价值,并输出这个最大总价值。
输入格式:
输入物品的数量:n
输入第一个物品的重量和价值(请使用空格分隔开):x1 y1
输入第二个物品的重量和价值(请使用空格分隔开):x2 y2
输入第三个物品的重量和价值(请使用空格分隔开):x3 y3
.....................
输入第 n 个物品的重量和价值(请使用空格分隔开):xn yn
输出格式:
最大