机器学习之提升方法Adaboost算法

本文介绍了Adaboost算法,一种集成学习的提升方法。Adaboost通过迭代训练多个弱分类器,并根据它们的性能分配权重,形成强分类器。算法主要步骤包括初始化样本权重、训练弱分类器、更新权重和构建最终分类器。其优点包括不易过拟合、高精度和广泛适用性,但对异常样本敏感,且训练耗时。迭代次数通常由正确率差值或时间限制决定。
摘要由CSDN通过智能技术生成

1.背景

集成学习(ensemble learning)通过构建并结合多个学习器来提升性能
集成学习分为两大类:
个体分类器存在强依赖方法(Boosting)
个体学习器之间不存在强依赖关系(Bagging,随机森林)
提升方法的思路:
对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比任何一个专家单独的判断好。实际上,就是“三个臭皮匠顶个诸葛亮”的道理。
对于提升方法来说,有两个问题:

  • 在每一轮如何改变训练数据的权值与概率分布
  • 如何将若分类器组合成一个强分类器

Boosting类算法核心理念
将多个弱分类器进行合理的结合,使其成为一个强分类器,可以理解成“前人栽树,后人乘凉”。前辈创造条件,后备在前辈的基础上进行改进。即我们先训练一个弱学习器,再对这个模型进行评估,对这个模型中做对的问题,我们减小对它的注意力;做错的问题那就增大注意力,专注于克服前面模型不能解决的困难点。最后,当我们把所有的模型整合成一个大的框架的时候,里面既有处理简单问题的模型也有处理困难问题的模型,使大框架的整体模型性能有所提高。
在这里插入图片描述
Boosting族最著名的代表算法是Adaboost,它的做法是:

  • 提高那些被前一轮若分类器错误分类样本数据的权值,降低正确分类样本的权值
  • 采取加权多数表决的方法,加大分类误差率小的若分类器的权值,减小分类误差率大的弱分类器的权值。

2.基本原理

强可学习:识别准确率很高并能在多项式时间内完成的学习算法
弱可学习:识别错误率小于1/2(即准确率仅比随机猜测略高的学习算法)

Step1:训练每个弱分类器,计算样本困难度。
(1)初始化样本权重为1/N
(2)利用当前弱分类器的训练结果,更新所有样本的权重。正确分类的样本就降低权重,错误分类的样本就增大权重。
在这里插入图片描述

  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 16
    评论
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值