TensorFlow函数整理——tf.placeholder

构造方法:

tf.placeholder(
    dtype
,
    shape
=None,
    name
=None
)

函数说明:

插入一个待初始化的张量(Tensor)占位符(可以理解为开辟一个空间,在执行的时候再赋具体的值

参数说明:

dtype:被填充的张量(Tensor)的元素类型。

shape:被填充张量(Tensor)的形状(可选参数)。如果没有指定张量(Tensor)打形状,你可以填充该张量(Tensor)为任意形状。

name:为该操作提供一个名字(可选参数)。

返回值:

一个张量(Tensor)。 必须在使用句柄的情况下赋值,但不可以直接求值。

实例:

随机生成1024*1024的矩阵求其平方。

x = tf.placeholder(tf.float32, shape=(1024, 1024))
y
= tf.matmul(x, x)

with tf.Session() as sess:
 
print(sess.run(y))  # ERROR: 由于x没有分配具体的数据所以该句将报错,注释掉后运行下面的语句即可

  rand_array
= np.random.rand(1024, 1024)
 
print(sess.run(y, feed_dict={x: rand_array}))  # feed_dict以字典的方式将生成的rand_array填充进x中

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值