描述
已知一棵 n 个节点的有根树。有 m 个询问,每个询问给出了一对节点的编号 xx 和 yy,询问 xx 与 yy 的祖孙关系。
输入
输入第一行包括一个整数 nn 表示节点个数;
接下来 nn 行每行一对整数对 aa和 bb 表示 aa 和 bb 之间有连边。如果 bb 是 −1−1,那么 aa 就是树的根;
第 n+2n+2 行是一个整数 mm 表示询问个数;
接下来 mm 行,每行两个正整数 xx和 yy,表示一个询问。
输出
对于每一个询问,若 xx 是 yy的祖先则输出 11,若 yy 是 xx 的祖先则输出 22,否则输出 00。
样例输入
10
234 -1
12 234
13 234
14 234
15 234
16 234
17 234
18 234
19 234
233 19
5
234 233
233 12
233 13
233 15
233 19样例输出
1
0
0
0
2提示
对于 30%30% 的数据,1≤n,m≤1031≤n,m≤103;
对于 100%100% 的数据,1≤n,m≤4×1041≤n,m≤4×104,每个节点的编号都不超过 4×104
真水题,求个LCA就完了。。。
#include<bits/stdc++.h>
using namespace std;
#define N 80001
int n,m,first[N],cnt,dis[N],next[N],to[N];
int f[N][22],dep[N];
void add(int u,int v){
next[++cnt]=first[u];first[u]=cnt;to[cnt]=v;
next[++cnt]=first[v];first[v]=cnt;to[cnt]=u;
}
void deal_first(int u,int father){
dep[u]=dep[father]+1;
for(int i=0;i<=19;i++){
f[u][i+1]=f[f[u][i]][i];
}
for(int e=first[u];e;e=next[e]){//处理与当前u相连的下一个点
int v=to[e];
if(v==father)//已经处理过
continue;
f[v][0]=u;//v结点是u的son,v跳2^0到u
deal_first(v,u);//递归下去
}
}
int lca(int x,int y){
if(dep[x]<dep[y])//保证x的深度大于y,这样就同时对x,y进行了跳跃
swap(x,y);
for(int i=19;i>=0;i--){//跳到同一深度
if(dep[f[x][i]]>=dep[y])//只有当x的深度仍大与等于y的深度时,对x进行跳跃
x=f[x][i];
if(x==y)
return x;//当 x,y在树的同一分支,x,y的公共祖先是其中一个
}
for(int i=19;i>=0;i--){//两者一起进行跳跃
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
}
return f[x][0];// 最后一定跳到最近公共祖先的儿子上
}
int main(){
int s;
cin>>n;
for(int i=1;i<=n;i++){
int x,y;
cin>>x;
cin>>y;
if(y!=-1){
add(x,y);
}
else
s=x;
}
deal_first(s,0);
cin>>m;
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
int t=lca(x,y);
if(t==x)
cout<<"1"<<endl;
else
if(t==y)
cout<<"2"<<endl;
else cout<<"0"<<endl;
}
}