《Python数据分析与挖掘实战》第三章案例代码总结与修改分析

第三章案例代码总结与修改分析

【有问题或错误,请私信我将及时改正;借鉴文章标明出处,谢谢】

每个案例代码全部为书中源代码,出现错误按照每个案例下面给出的代码错误,原因,及怎样修改进行修改即可解决每个案例错误

3-1

#-*- coding: utf-8 -*-
import pandas as pd
catering_sale = 'F:/大二下合集/Python数据分析与挖掘/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列
import matplotlib.pyplot as plt #导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.figure() #建立图像
p = data.boxplot() #画箱线图,直接使用DataFrame的方法
x = p['fliers'][0].get_xdata() # 'flies'即为异常值的标签
y = p['fliers'][0].get_ydata()
y.sort() #从小到大排序,该方法直接改变原对象
#用annotate添加注释
#其中有些相近的点,注解会出现重叠,难以看清,需要一些技巧来控制。
#以下参数都是经过调试的,需要具体问题具体调试。
for i in range(len(x)):
  if i>0:
    plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.05 -0.8/(y[i]-y[i-1]),y[i]))
  else:
    plt.annotate(y[i], xy = (x[i],y[i]), xytext=(x[i]+0.08,y[i]))
plt.show() #展示箱线图

代码错误:

TypeError: 'AxesSubplot' object is not subscriptable

在这里插入图片描述

原因:

p=data.boxplot()

修改为:

p=data.boxplot(return_type='dict')

3-2

#-*- coding: utf-8 -*-
#餐饮销量数据统计量分析
from __future__ import print_function
import pandas as pd
catering_sale = 'F:/大二下合集/Python数据分析与挖掘/catering_sale.xls' #餐饮数据
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列
data = data[(data[u'销量'] > 400)&(data[u'销量'] < 5000)] #过滤异常数据
statistics = data.describe() #保存基本统计量
statistics.loc['range'] = statistics.loc['max']-statistics.loc['min'] #极差
statistics.loc['var'] = statistics.loc['std']/statistics.loc['mean'] #变异系数
statistics.loc['dis'] = statistics.loc['75%']-statistics.loc['25%'] #四分位数间距
print(statistics)

这个案例代码没问题

3-3

#-*- coding: utf-8 -*-
#菜品盈利数据 帕累托图
from __future__ import print_function
import pandas as pd
#初始化参数
dish_profit = 'F:/大二下合集/Python数据分析与挖掘/catering_dish_profit.xls' #餐饮菜品盈利数据
data = pd.read_excel(dish_profit, index_col = u'菜品名')
data = data[u'盈利'].copy()
data.sort(ascending = False)
import matplotlib.pyplot as plt #导入图像库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.figure()
data.plot(kind='bar')
plt.ylabel(u'盈利(元)')
p = 1.0*data.cumsum()/data.sum()
p.plot(color = 'r', secondary_y = True, style = '-o',linewidth = 2)
plt.annotate(format(p[6], '.4%'), xy = (6, p[6]), xytext=(6*0.9, p[6]*0.9), arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) #添加注释,即85%处的标记。这里包括了指定箭头样式。
plt.ylabel(u'盈利(比例)')
plt.show()

代码错误:

AttributeError: 'Series' object has no attribute 'sort'

在这里插入图片描述

原因:

data.sort(ascending = False)

修改为:

data.sort_values(ascending = False)

3-4

#-*- coding: utf-8 -*-
#餐饮销量数据相关性分析
from __future__ import print_function
import pandas as pd
catering_sale = 'F:/大二下合集/Python数据分析与挖掘/catering_sale_all.xls' #餐饮数据,含有其他属性
data = pd.read_excel(catering_sale, index_col = u'日期') #读取数据,指定“日期”列为索引列
data.corr() #相关系数矩阵,即给出了任意两款菜式之间的相关系数
data.corr()[u'百合酱蒸凤爪'] #只显示“百合酱蒸凤爪”与其他菜式的相关系数
data[u'百合酱蒸凤爪'].corr(data[u'翡翠蒸香茜饺']) #计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数

代码错误:

没有报错,但是在idea中运行没有结果

原因:

data.corr() #相关系数矩阵,即给出了任意两款菜式之间的相关系数
data.corr()[u'百合酱蒸凤爪'] #只显示“百合酱蒸凤爪”与其他菜式的相关系数
data[u'百合酱蒸凤爪'].corr(data[u'翡翠蒸香茜饺']) #计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数

修改为:(即添加print)

print(data.corr()) #相关系数矩阵,即给出了任意两款菜式之间的相关系数
print(data.corr()[u'百合酱蒸凤爪']) #只显示“百合酱蒸凤爪”与其他菜式的相关系数
print(data[u'百合酱蒸凤爪'].corr(data[u'翡翠蒸香茜饺'])) #计算“百合酱蒸凤爪”与“翡翠蒸香茜饺”的相关系数

3-5(是3.3节的各个实例)

import numpy as np
import pandas as pd
print("-----1.corr---------")
D = pd.DataFrame([range(1, 8), range(2, 9)])
print(D.corr(method='pearson'))
S1 = D.loc[0]
S2 = D.loc[1]
print(S1.corr(S2, method='pearson'))
print("----2.cov----------")
D = pd.DataFrame(np.random.randn(6, 5))
print(D.cov())
print(D[0].cov(D[1]))
print("----3.skew/kurt----------")
D = pd.DataFrame(np.random.randn(6, 5))
print(D.skew())
print("----4.describe----------")
D = pd.DataFrame(np.random.randn(6, 5))
print(D.describe())
print("----拓展统计特征函数1.1----------")
D=pd.Series(range(0, 10))
print(D.cumsum())
print("----拓展统计特征函数1.2----")
pd.rolling_sum(D, 2) 
print("----统计作图函数1.1(作图之前步骤)----------")
import matplotlib.pyplot as  plt #导入作图库
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
plt.figure(figsize = (7, 5)) #创建图像区域,指定比例
plt.show()
print("----统计作图函数1.2(plot示例)----------")
x = np.linspace(0,2*np.pi,50) #x坐标输入
y = np.sin(x) #计算对应x的正弦值
plt.plot(x, y, 'bp--') #控制图形格式为蓝色带星虚线,显示正弦曲线
plt.show()
print("----统计作图函数1.3(pie示例)----------")
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs' #定义标签
sizes = [15, 30, 45, 10] #每一块的比例
colors = ['yellowgreen', 'gold', 'lightskyblue', 'lightcoral'] #每一块的颜色
explode = (0, 0.1, 0, 0) #突出显示,这里仅仅突出显示第二块(即'Hogs')
plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90)
plt.axis('equal') #显示为圆(避免比例压缩为椭圆)
plt.show()
print("----统计作图函数1.4(hist示例)----------")
x = np.random.randn(1000) #1000个服从正态分布的随机数
plt.hist(x, 10) #分成10组进行绘制直方图
plt.show()
print("----统计作图函数1.5(boxplot示例)----------")
x = np.random.randn(1000) #1000个服从正态分布的随机数
D = pd.DataFrame([x, x+1]).T #构造两列的DataFrame
D.plot(kind = 'box') #调用Series内置的作图方法画图,用kind参数指定箱形图box
plt.show()
print("----统计作图函数1.6(plot(logx=True)/plot(logy=True)示例,改数字)----------")
plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
x = pd.Series(np.exp(np.arange(10))) #原始数据
x.plot(label = u'原始数据图', legend = True)
plt.show()
x.plot(logy = True, label = u'对数数据图', legend = True)
plt.show()
print("----统计作图函数1.7(plot(yerr = error))示例,改数字)----------")
error = np.random.randn(10) #定义误差列
y = pd.Series(np.sin(np.arange(10))) #均值数据列
y.plot(yerr = error) #绘制误差图
plt.show()

代码错误:

拓展统计特征函数1.2(即第二个例子),没有rolling_sum标红运行至此行就停止运行

原因:

书中依次对相邻两项求和代码例子代码为:pd.rolling_sum(D,2)

修改为:

D=D.rolling(2).sum()
并且要想输出得加:print(D)

【有问题或错误,请私信我将及时改正;借鉴文章标明出处,谢谢】

<p> <span> </span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span style="color:#E53333;">92讲视频课+16大项目实战+课件源</span><span style="color:#E53333;">码+讲师社群闭门分享会</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;font-size:14px;">为什么学习数据分析?</span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;"><br /> </span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;">       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。 </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <br /> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;">       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 </p> <p style="font-size:11pt;color:#494949;">  <span style="font-size:11pt;"> </span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span style="color:#337FE5;"><strong>本课程共包含五大模块:</strong></span> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-14 ql-author-32569780"><span style="color:#337FE5;"><br /> </span></strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">一、先导篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">二、基础篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。 </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">三、数据采集篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据分析的尴尬。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">四、分析工具篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。</span> </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <strong class="ql-size-12 ql-author-32569780">五、算法篇:</strong> </p> <p class="ql-long-32569780" style="font-size:11pt;color:#494949;"> <span class="ql-author-32569780">算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。</span> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006110958102443.jpg" /> </p>
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页