计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-02
1. APM: Large Language Model Agent-based Asset Pricing Models
Authors: Junyan Cheng, Peter Chin
https://arxiv.org/abs/2409.17266
APM: 基于大型语言模型的代理资产定价模型(LLM Agent-based Asset Pricing Models, AAPM)
摘要:
在本研究中,我们提出了一种新颖的资产定价方法,即基于大型语言模型(LLM)代理的资产定价模型(AAPM),它融合了LLM代理的定性自由裁量投资分析和定量手工金融经济因素,以预测资产的超额回报。实验结果显示,我们的方法在投资组合优化和资产定价误差方面,超过了基于机器学习的资产定价基线。具体来说,异常投资组合的夏普比率和平均绝对α系数分别显著提高了9.6%和10.8%。此外,我们对模型进行了广泛的消融研究,并深入分析了数据,以揭示所提方法的进一步洞见。
研究背景:
金融资产定价一直是实证金融经济学研究的焦点。当前的资产定价方法依赖于精心设计的宏观经济指标或公司特定因素作为未来超额回报的预测因子。然而,这些方法受到了有效市场假说(EMH)的挑战,该假说认为在有效市场中,当预测因子被市场参与者完全发现和使用时,这些手工因素最终将失去其预测能力。
问题与挑战:
尽管定量模型在现实市场中取得了巨大成功,但它们在解释资产回报异常方面仍存在挑战。此外,即使结合了当前的自然语言处理(NLP)和语义分析方法,定量因子模型也未能完全捕捉到定性分析中的洞察力。
如何解决:
本研究引入了一种新颖的资产定价方法,即LLM代理的资产定价模型(AAPM),它融合了由LLM代理模拟的自由裁量投资分析和基于定量因子的方法。AAPM利用LLM代理迭代分析最新新闻,并结合先前分析报告的记忆和包含书籍、百科全书和期刊的知识库。
创新点:
- 提出了一种新颖的LLM代理架构,用于分析商业新闻,以获取自由裁量投资洞察作为定价信号。
- 提出了一种混合资产定价框架,结合了定性自由裁量分析和定量手工因素。
- 进行了全面的实验,以评估所提出方法的有效性,并深入分析了各个组成部分。
算法模型:
AAPM模型使用LLM代理来迭代分析输入的新闻,并生成分析报告。这些定性分析报告与定量手工因素结合,输入到混合资产定价网络中。该网络使用平均平方误差(MSE)准则进行训练,以最小化预测回报和实际回报之间的平均平方差。
实验效果:
实验结果显示,AAPM在投资组合优化方面取得了最高夏普比率,并在资产定价误差方面实现了最低的平均绝对α系数。此外,该方法在统计显著性测试中也表现良好。
重要数据与结论:
- 夏普比率提高了9.6%。
- 资产定价误差的平均绝对α系数提高了10.8%。
- 在投资组合优化和资产定价误差方面超过了现有的基于机器学习的资产定价方法。
推荐阅读指数:
★★★★☆
推荐理由:
这篇文章提出了一种创新的资产定价方法,通过结合定性和定量分析,提高了预测资产超额回报的准确性。这对于金融领域的研究人员和从业者来说都是一个有价值的贡献,因为它提供了一种新的视角来理解和改进资产定价模型。
2. Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning
Authors: Debargha Ganguly, Srinivasan Iyengar, Vipin Chaudhary and Shivkumar Kalyanaraman
https://arxiv.org/abs/2409.17270
思维的证明:神经符号