斐波那契(黄金分割法)查找基本介绍
- 黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
- 斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618
斐波那契(黄金分割法)查找算法
- 斐波那契(黄金分割法)原理
斐波那契查找原理与二分查找和插值查找算法相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示
对F(k-1)-1的理解:
- 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1
- 类似的,每一子段也可以用相同的方式分割
- 但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
while(n>fib(k)-1){ k++; }
- 代码示例
public class FibonacciSearch {
public static void main(String[] args) {
int [] arr = {1,8, 10, 89, 1000, 1234};
System.out.println("index=" + fibSearch(arr, 1000));// 0
}
//该方法返回一个斐波拉契数组
public static int[] fib(int size) {
int[] f = new int[size];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < size; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
public static int fibSearch(int[] array, int findVal) {
// 定义查找数组的下标开始位置
int low = 0;
// 查找数组结束位置
int high = array.length - 1;
// 斐波拉契分割数值下标
int k = 0;
// 获取斐波拉契数组
int[] fib = fib(array.length);
// 获取k值
while (array.length > fib[k] - 1) {
k++;
}
// 因为数组array的长度有可能小于 fib[k]-1,所以需要构造一个新数组数组的长度为fib[k]-1,并把array值复制
int[] temp = Arrays.copyOf(array, fib[k] - 1);
// 把temp最后用0填充的几个数重新赋值
for(int i = high + 1; i < temp.length; i++) {
temp[i] = array[high];
}
// 使用循环找到我们的目标值
while (low <= high) {
int mid = low + fib[k - 1] - 1;
if (findVal < temp[mid]) {
high = mid - 1;
//2. f[k] = f[k-1] + f[k-2]
//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
//即 在 f[k-1] 的前面继续查找 k--
//即下次循环 mid = f[k-1-1]-1
k--;
}else if (findVal > temp[mid]) {
low = mid + 1;
//2. f[k] = f[k-1] + f[k-2]
//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
//4. 即在f[k-2] 的前面进行查找 k -=2
//5. 即下次循环 mid = f[k - 1 - 2] - 1
k -= 2;
} else {
// 找到了
if (high < mid) {
return high;
}else {
return mid;
}
}
}
return -1;
}
}