斐波那契(黄金分割法)查找算法

斐波那契(黄金分割法)查找基本介绍

  1. 黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
  2. 斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618

斐波那契(黄金分割法)查找算法

  • 斐波那契(黄金分割法)原理
    斐波那契查找原理与二分查找和插值查找算法相似,仅仅改变了中间结点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示
    在这里插入图片描述

对F(k-1)-1的理解:

  1. 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。
    while(n>fib(k)-1){
       k++;
    } 
    
  • 代码示例
public class FibonacciSearch {

    public static void main(String[] args) {
        int [] arr = {1,8, 10, 89, 1000, 1234};
        System.out.println("index=" + fibSearch(arr, 1000));// 0
    }

    //该方法返回一个斐波拉契数组
    public static int[] fib(int size) {
        int[] f = new int[size];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < size; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    public static int fibSearch(int[] array, int findVal) {
        // 定义查找数组的下标开始位置
        int low = 0;
        // 查找数组结束位置
        int high = array.length - 1;
        // 斐波拉契分割数值下标
        int k = 0;
        // 获取斐波拉契数组
        int[] fib = fib(array.length);
        // 获取k值
        while (array.length > fib[k] - 1) {
            k++;
        }

        // 因为数组array的长度有可能小于 fib[k]-1,所以需要构造一个新数组数组的长度为fib[k]-1,并把array值复制
        int[] temp = Arrays.copyOf(array, fib[k] - 1);

        // 把temp最后用0填充的几个数重新赋值
        for(int i = high + 1; i < temp.length; i++) {
            temp[i] = array[high];
        }

        // 使用循环找到我们的目标值
        while (low <= high) {
            int mid = low + fib[k - 1] - 1;
            if (findVal < temp[mid]) {
                high = mid - 1;
                //2. f[k] = f[k-1] + f[k-2]
                //因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
                //即 在 f[k-1] 的前面继续查找 k--
                //即下次循环 mid = f[k-1-1]-1
                k--;
            }else if (findVal > temp[mid]) {
                low = mid + 1;
                //2. f[k] = f[k-1] + f[k-2]
                //3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
                //4. 即在f[k-2] 的前面进行查找 k -=2
                //5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else {
                // 找到了
                if (high < mid) {
                    return high;
                }else {
                    return mid;
                }
            }
        }
        return -1;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值