leetcode :847. Shortest Path Visiting All Nodes(访问所有节点的最短路径)

题目描述:

给出 graph 为有 N 个节点(编号为 0, 1, 2, ..., N-1)的无向连通图。 

graph.length = N,且只有节点 i 和 j 连通时,j != i 在列表 graph[i] 中恰好出现一次。

返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。

示例 1:

输入:[[1,2,3],[0],[0],[0]]
输出:4
解释:一个可能的路径为 [1,0,2,0,3]

示例 2:

输入:[[1],[0,2,4],[1,3,4],[2],[1,2]]
输出:4
解释:一个可能的路径为 [0,1,4,2,3]

解题思路:

本题看起来求访问节点的最短距离与中国邮局问题类似,用广度优先搜索算法是效率比较高的方法,下面着重分析一下BFS算法:

代码如下://在代码中去解释每一步的做法,这样容易理解

//在这里我们创建一个节点类

struct bfsNode
{
    int endNode;//当前访问的节点
    int state;//当前访问节点的状态(实际上表示一条路径,表示已经访问过的节点)
    int len;(当前已经访问节点的路径长度)
}; 
class Solution {
public:
    int shortestPathLength(vector<vector<int>>& graph){
        int n=graph.size();
        if(n==0)return 0;//如果为空图就返回
        vector<vector<int>>visited(n,vector<int>(1<<n,0));//使用一个二维数组去表示当前路径是否已经访问过,防止重复访问,visited[i][state]表示在访问节点i时的当前路径是否已经访问过
        queue<bfsNode>q;//对于广度优先搜索,我们必须设置一个队列去保存节点的邻接节点
        for(int i=0;i<n;++i)
        {
            q.push({i,1<<i,0});//把图的每一个节点入队列,并初始化每个节点的状态,这里状态的表示使用二进制表示的,例如

对于节点数为5的图的0节点 初始状态为00001,1节点为00010,2节点00100;
        }
        int check=(1<<n)-1;// check用于检查是否访问完所有的节点,check=11111
        while(!q.empty())
        {
            bfsNode p=q.front();//出队列
            q.pop();//删除队顶元素,队列为先进先出
            if(p.state==check)//如果所有的节点都访问过了,就返回路径长度
                return p.len;

     //依次访问每个出队列节点的邻接点
            for(auto&node:graph[p.endNode])
            {
                int state=p.state|(1<<node);//设置访问该节点时的已经访问过的路径状态  或操作比较简便
                if(visited[node][state]==0)//如果该路径没有访问过,就访问
                {
                    visited[node][state]=1;//将该路径设置成已访问
                    q.push({node,state,p.len+1});//将该路径入队列;
                }
                    
            }
        }
        return 0;
        
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值