题目描述:
给出 graph
为有 N 个节点(编号为 0, 1, 2, ..., N-1
)的无向连通图。
graph.length = N
,且只有节点 i
和 j
连通时,j != i
在列表 graph[i]
中恰好出现一次。
返回能够访问所有节点的最短路径的长度。你可以在任一节点开始和停止,也可以多次重访节点,并且可以重用边。
示例 1:
输入:[[1,2,3],[0],[0],[0]] 输出:4 解释:一个可能的路径为 [1,0,2,0,3]
示例 2:
输入:[[1],[0,2,4],[1,3,4],[2],[1,2]] 输出:4 解释:一个可能的路径为 [0,1,4,2,3]
解题思路:
本题看起来求访问节点的最短距离与中国邮局问题类似,用广度优先搜索算法是效率比较高的方法,下面着重分析一下BFS算法:
代码如下://在代码中去解释每一步的做法,这样容易理解
//在这里我们创建一个节点类
struct bfsNode
{
int endNode;//当前访问的节点
int state;//当前访问节点的状态(实际上表示一条路径,表示已经访问过的节点)
int len;(当前已经访问节点的路径长度)
};
class Solution {
public:
int shortestPathLength(vector<vector<int>>& graph){
int n=graph.size();
if(n==0)return 0;//如果为空图就返回
vector<vector<int>>visited(n,vector<int>(1<<n,0));//使用一个二维数组去表示当前路径是否已经访问过,防止重复访问,visited[i][state]表示在访问节点i时的当前路径是否已经访问过
queue<bfsNode>q;//对于广度优先搜索,我们必须设置一个队列去保存节点的邻接节点
for(int i=0;i<n;++i)
{
q.push({i,1<<i,0});//把图的每一个节点入队列,并初始化每个节点的状态,这里状态的表示使用二进制表示的,例如
对于节点数为5的图的0节点 初始状态为00001,1节点为00010,2节点00100;
}
int check=(1<<n)-1;// check用于检查是否访问完所有的节点,check=11111
while(!q.empty())
{
bfsNode p=q.front();//出队列
q.pop();//删除队顶元素,队列为先进先出
if(p.state==check)//如果所有的节点都访问过了,就返回路径长度
return p.len;
//依次访问每个出队列节点的邻接点
for(auto&node:graph[p.endNode])
{
int state=p.state|(1<<node);//设置访问该节点时的已经访问过的路径状态 或操作比较简便
if(visited[node][state]==0)//如果该路径没有访问过,就访问
{
visited[node][state]=1;//将该路径设置成已访问
q.push({node,state,p.len+1});//将该路径入队列;
}
}
}
return 0;
}
};