题目大意:下棋比赛,棋子是标有正整数,和“start”和“end”。从起点往终点跳,可以跨越一个甚至多个棋子,但不能后退,且下一个棋子的数值必须大于当前数值,求出从起点到终点的路径中经过的点的数值之和的最大值。也就是求上升子序列中的和的最大值。
思路:动态规划问题,找出递推公式,用数组a[]来存储数据
dp[i]=max{dp[j]+a[i],a[i]} (当j,<i 且 a[i]>a[j])
如果a[i]<a[j]就跳过
代码如下:
# include <iostream>
using namespace std;
int a[1000],dp[1000];
int maxsum,n;
int main ()
{
while(cin>>n,n)
{
int i,j;
for(i=0;i<n;i++)
cin>>a[i];
dp[0]=a[0];
maxsum=dp[0];
for(i=1;i<n;i++)
{
dp[i]=a[i];
for(j=0;j<i;j++)
{
if(a[i]>a[j])//只考虑了升序的情况,如果不满足升序,则相当于自动跳过
{
if(dp[j]+a[i]>dp[i])
dp[i]=dp[j]+a[i];
}
}
if(dp[i]>maxsum)//每次迭代之后,取最大的值维最终的结果
maxsum=dp[i];
}
cout<<maxsum<<endl;
}
return 0;
}