hdu1087

题目大意:下棋比赛,棋子是标有正整数,和“start”和“end”。从起点往终点跳,可以跨越一个甚至多个棋子,但不能后退,且下一个棋子的数值必须大于当前数值,求出从起点到终点的路径中经过的点的数值之和的最大值。也就是求上升子序列中的和的最大值。

思路:动态规划问题,找出递推公式,用数组a[]来存储数据

            dp[i]=max{dp[j]+a[i],a[i]} (当j,<i 且 a[i]>a[j])

            如果a[i]<a[j]就跳过

代码如下:

# include <iostream>
using namespace std;

int a[1000],dp[1000];
int maxsum,n;

int main ()
{
	while(cin>>n,n)
	{
		int i,j;
        for(i=0;i<n;i++)
			cin>>a[i];
		dp[0]=a[0];
		maxsum=dp[0];
		for(i=1;i<n;i++)
		{
			dp[i]=a[i];
			for(j=0;j<i;j++)
			{
				if(a[i]>a[j])//只考虑了升序的情况,如果不满足升序,则相当于自动跳过
				{
					if(dp[j]+a[i]>dp[i])
						dp[i]=dp[j]+a[i];
				}
			}
			if(dp[i]>maxsum)//每次迭代之后,取最大的值维最终的结果
				maxsum=dp[i];
		}
		cout<<maxsum<<endl;
			
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值