辗转相除法详细分析及各种语言描述总结

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:
定理:gcd(a,b) = gcd(b,a mod b)

其算法用C语言描述为

   int gcd(int m, int n)
    {
     if (m == 0)
      return n;
     if (n == 0)
      return m;
     if (m < n)
     {
      int tmp = m;
      m = n;
      n = tmp;
     }
     while (n != 0)
     {
      int tmp = m % n;
      m = n;
      n = tmp;
     }
    
     return m;
    }

欧几里德算法是计算两个数最大公约数的传统算法,他无论从理论还是从效率上都是很好的。但是他有一个致命的缺陷,这个缺陷只有在大素数时才会显现出来。
考虑现在的硬件平台,一般整数最多也就是64位,对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,设计这样的程序迫切希望能够抛弃除法和取模。

Stein算法由J. Stein 1961年提出,这个方法也是计算两个数的最大公约数。和欧几里德算法 算法不同的是,Stein算法只有整数的移位和加减法,这对于程序设计者是一个福音。

为了说明Stein算法的正确性,首先必须注意到以下结论:

gcd(a,a) = a,也就是一个数和他自身的公约数是其自身
gcd(ka,kb) = k gcd(a,b),也就是最大公约数运算和倍乘运算可以交换,特殊的,当k=2时,说明两个偶数的最大公约数必然能被2整除
有了上述规律就可以给出Stein算法如下:

1.如果A=0,B是最大公约数,算法结束
2.如果B=0,A是最大公约数,算法结束
3.设置A1 = A、B1=B和C1 = 1
4.如果An和Bn都是偶数,则An+1 =An /2,Bn+1 =Bn /2,Cn+1 =Cn *2(注意,乘2只要把整数左移一位即可,除2只要把整数右移一位即可)
5.如果An是偶数,Bn不是偶数,则An+1 =An /2,Bn+1 =Bn ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
6.如果Bn是偶数,An不是偶数,则Bn+1 =Bn /2,An+1 =An ,Cn+1 =Cn (很显然啦,2不是奇数的约数)
7.如果An和Bn都不是偶数,则An+1 =|An -Bn|,Bn+1 =min(An,Bn),Cn+1 =Cn
8.n++,转4
这个算法的原理很显然,所以就不再证明了。现在考察一下该算法和欧几里德方法效率上的差别。

考虑欧几里德算法,最恶劣的情况是,每次迭代a = 2b -1,这样,迭代后,r= b-1。如果a小于2N,这样大约需要 4N次迭代。而考虑Stein算法,每次迭代后,显然AN+1BN+1≤ ANBN/2,最大迭代次数也不超过4N次。也就是说,迭代次数几乎是相等的。但是,需要注意的是,对于大素数,试商法将使每次迭代都更复杂,因此对于大素数Stein将更有优势。

其算法用C++语言描述为:

bool is_even(int n) 
{
 return !(n & 1);
}
int gcd2(int m, int n)
{
 int c = 1;
 while (m != 0 && n != 0)
 {
  if (is_even(m) && is_even(n))
  {
   m >>= 1;
   n >>= 1;
   c <<= 1;
  }
  else if (is_even(m) && !is_even(n))
  {
   m >>= 1;
  }
  else if (!is_even(m) && is_even(n))
  {
   n >>= 1;
  }
  else if (!is_even(m) && !is_even(n))
  {
   int m1 = m;
   int n1 = n;
   m = abs(m-n);  //crt库函数
   n = min(m1, n1);//crt宏
  }
 }

 return c * n;
}

算法描述

两个数a,b的最大公约数记为GCD(a,b)。a,b的最大公约数是两个数的公共素因子的乘积。如462可以分解成2 × 3 × 7 × 11;1071可以分解成3 × 3 × 7 × 17。462和1071的最大公约数等于它们共有的素因数的乘积3 × 7 = 21。如果两数没有公共的素因数,那么它们的最大公约数是1,也即这两个数互素,即GCD(a,b)=1。另g=GCD(a,b),则a=mg, b=ng,其中m,n均为正整数。由上述分析可知,m,n互素。因为m,n没有公共素因子,GCD(m,n)=1。

辗转相除法是一种递归算法。设k表示步骤数(从0开始计数),算法的计算过程如下。每一步的输入是都是前两次计算的余数rk−1和rk−2。因为每一步计算出的余数都在不断减小,所以,rk−1小于rk−2。在第k步中,算法计算出满足以下等式的商qk和余数 rk:

rk−2 = qk rk−1 + rk
其中rk < rk−1。也就是rk−2要不断减去rk−1直到比rk−1小。

在第一步计算时(k = 0),设r−2和r−1分别等于a和b,第2步(此时k = 1)时计算r−1(即b)和r0(第一步计算产生的余数)相除产生的商和余数,以此类推。整个算法可以用如下等式表示:

a = q0 b + r0
b = q1 r0 + r1
r0 = q2 r1 + r2
r1 = q3 r2 + r3

  如果输入参数a小于b,则第一步计算的结果是交换两个变量的值:因为a < b,所以a和b相除得到的商q0等于0,余数r0等于a。所以在运算的每一步中得出的余数一定小于上一步计算的余数(rk一定小于rk−1)。由于每一步的余数都在减小并且不为负数,必然存在第N步时rN等于0,使算法终止,rN−1 就是a和b的最大公约数。其中N不可能无穷大,因为在r0和0之间只有有限个自然数。

辗转相除法的正确性可以用两步来证明。首先,算法的最终结果rN−1同时整除a和b。因为它是一个公约数,所以必然小于或者等于最大公约数g。然后,任何a和b的公约数都能整除rN−1。所以g一定小于或等于rN−1。两个不等式只在rN−1 = g是同时成立。

算法实现

递归版本

	1 function gcd(a, b)
    2   if a<b
    3     swap(a,b);  
    4   if b==0
    5     then return a;
    6   else
    7     return gcd(b, a mod b);
    8 end

循环版本

1 function gcd(a,b)
2   if a<b
3     then swap(a,b);
4   while(b!=0)
5   {
6     c = a mod b;
7     a = b;
8     b = c;
9   }
10   return a;
11 end

扩展欧几里德算法

贝祖等式说明,两个数a和b的最大公约数g可以表示为a和b的线性和。也就是说,存在整数s和t使g = sa + tb。整数s和t可以从辗转相除法算出的商q0、q1……计算出。贝祖等式的整数s和t可以通过扩展欧几里得算法算出。这个扩展算法在原有辗转相除法的基础上增加了两个递归等式:

sk = sk−2 − qk−1sk−1
tk = tk−2 − qk−1tk−1
算法开始时:

s−2 = 1, t−2 = 0
s−1 = 0, t−1 = 1
加上这个递归式后,当算法终止于rN = 0,贝祖等式的整数s和t分别由sN和tN给出。

这个算法的正确性可以用数学归纳法来证明。假设递归至第k−1步是正确的,也就是假设:

rj = sj a + tj b
对所有j小于k成立。则第k步运算得出以下等式:

rk = rk−2 − qk−1rk−1
因为rk−2和rk−1被假定是正确的,所以可以用s和t表示:

rk = (sk−2 a + tk−2 b) − qk−1(sk−1 a + tk−1 b)
整理后得到第k步的结果,和我们期望得到的结果一致:

rk = sk a + tk b = (sk−2 − qk−1sk−1) a + (tk−2 − qk−1tk−1) b
算法分析

加百利·拉梅于1884年指出,一个算法的效率可以用计算所需步数乘以每步计算的开销表示。用辗转相除法计算两个数的最大公约数所需的步数不会超过其中较小数的位数h的5倍。因为每一步的计算开销通常也是h数量级的,所以辗转相除法的复杂度是h2。

详细内容请看:
https://www.cnblogs.com/ThinkingWorld/articles/1857143.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值