筛选法求素数

        利用筛选法求素数可以极大地减少运算量。对于常见的求100或更小范围的素数,这种感觉可能不是很明显,但当范围扩大到100000甚至更大时,筛选法相较于普通求素数方法的优势便显而易见了(虽然之前也用过一些诸如:\sqrt{N}\frac{N}{2}、去掉偶数这样的方法来进行简化,但对于大范围的情况效果仍不如筛选法)。

        筛选法的具体做法是先把N个自然数按次序排列起来。首先排除1,1后面的第一个数是2,由于2是质数所以留下,并把后面所有2的倍数都去掉。2后面第一个没划去的数是3,把3留下,再把3后面所有能被3整除的数都划去。3后面第一个没划去的数是5,把5留下,再把5后面所有能被5整除的数都划去······以此类推,最后剩下的均为质数。

例:用筛选法求100之内的素数

 

 上图为循环部分的流程图。程序显示如下:

#include <stdio.h>
#include <math.h>
int main()
{
    int i, j, n, a[101];//0~100共101个数
    for (i = 0; i <=100; i++)//其实这里循环条件可以写成i<=sqrt(100),或者是i<=50,因为对于一个范围内的因数,只能出现在前面,比如1~10中任意数的因数,只可能在0~5这个范围内,也就是说5之后的数不可能是这个范围内任意一个数的因数。
    {
        a[i] = i;
    }
    a[1] = 0;//a[1]不是质数,设为0
    for (i = 2; i <=100; i++)
    {
        if (a[i] != 0)
        {
            for (j = i + 1; j <= 100; j++)
            {
                if (a[j] % a[i] == 0)
                {
                    a[j] = 0;
                }
            }
        }
       
    }
    printf("\n");
    for (i = 2, n = 0; i < 100; i++)
    {
        if (a[i] != 0)
        {
            printf("%5d", a[i]);
            n++;
        }
        if (n == 10)
        {
            printf("\n");
            n = 0;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值