- 博客(51)
- 资源 (5)
- 收藏
- 关注
原创 耦合、内聚的多种类型与特点
一文读懂耦合和内聚的多种类型及特点:(耦合)数据/标记/控制/通信/公共/内容耦合;(内聚)功能/顺序/通信/过程/时间/逻辑/偶然
2025-10-13 10:57:59
198
原创 软件过程模型
本文概述了软件生命周期及主要开发模型,以及软件能力成熟度模型。常见的开发模型包括:1)瀑布模型(需求明确);2)原型化模型(需求不明确);3)螺旋模型(增加风险分析);4)敏捷模型(如极限编程、Scrum等);5)统一过程模型(RUP,用例驱动);6)能力成熟度模型(CMM,分5个等级)。
2025-10-13 09:35:21
693
原创 金融科技之汇票——银行汇票、承兑汇票(银行承兑汇票、商业承兑汇票)
本文介绍了汇票的基本概念与分类,重点解析了银行汇票和商业汇票(包括银行承兑汇票和商业承兑汇票)的定义、信用本质及市场特征。通过对比表格清晰区分了两种承兑汇票的承兑人、信用等级、风险及融资成本差异。详细说明了汇票票面必备信息及票据融资的三种方式(贴现、转贴现、再贴现),并强调贴现率的市场决定属性。最后,概述了上海票据交易所在票据交易中的核心功能,包括电子化交易、价格透明化及统一市场构建。全文以简明结构系统梳理了汇票实务知识。
2025-10-11 17:32:22
1155
原创 语文是思想的抚摸 | 重读初中课文《未选择的路》,别美化你未曾选择的路,我选择我承担我无悔
森林里有两条路,一条人迹罕至,一条人声鼎沸..。无论我们处于哪个阶段,都会面临选择。没有人能保证每次选择都是对的,落子无悔,但我们要有承担选择背后的勇气和胆量,勇气是人类的赞歌,你我共勉...
2024-10-30 21:47:00
964
原创 语文是思想的抚摸 | 重读《邹忌讽齐王纳谏》,批评 Or 夸赞 ,你该如何保持脑袋清醒?
《邹忌讽齐王纳谏》不仅刻画了一个善于内省的谋士,他不居功自傲,敢于直谏。通过他的故事,我们发现在职场、生活中,无论你面对批评还是夸赞,脑袋清醒都是很重要的…
2024-10-28 22:33:08
332
原创 语文是思想的抚摸 | 重读《送东阳马生序》,感悟和重温明朝“开国文臣之首” 求学、求知时的心境
《送东阳马生序》这篇文章在自媒体平台上很火,很多人利用它作为背景音,再搭配上自己打工、“搬砖”的现实片段,便吸引了很多人的热议和共情。此外,有一些仿该文章的,讲述了自己放弃学业、早早步入社会,工作之后又觉得当时没真正读懂教育的滞后性,但请记得,向前看…
2024-10-28 01:11:06
1443
原创 “闲话终日有,不听自然无”--如何与“杠精”交谈?——观庄子与孔子
>本文章主要围绕着“辩论”这个主题,看古人是如何辩论,如何避免作为“杠精”直白输出?>摘自两篇文章,一是“子非鱼,安知鱼之乐?”的,身临其境地体会庄子与惠子的语言的妙处;二是孔子东游见两小儿辩日时,感受孔子对于争辩不参与、不偏执和实事求是的态度。
2024-10-24 23:59:17
676
原创 一文梳理清楚堆(大顶堆、小顶堆、优先级队列)以及TOP K问题
本文介绍了堆数据结构及其应用。堆是完全二叉树,分为大堆(父节点≥子节点)和小堆(父节点≤子节点)。重点讲解了TopK问题的两种解法:快速排序法(O(NlogN))和堆排序法(O(N+k*log2N)),并指出当数据量极大时应采用小堆策略。详细给出了堆的实现代码,包括上浮、下沉、插入和删除操作,并区分了大堆和小堆的下沉条件。最后说明堆排序的原理:升序建大堆,降序建小堆,通过反复交换堆顶和堆尾元素并调整堆结构实现排序。
2024-10-24 23:20:45
998
原创 语文是思想的抚摸 | 重读《马说》,感悟“伯乐相马”背后的智慧
>“初闻不识曲中意,再听已是曲终人”。世有伯乐,然后有千里马。无论你是考研考公等考试大军中的一员,还是已步入社会的打工人或者领导,当你面临被人选择或者选择人时,皆可从《马说》中找到你想要的答案.
2024-10-22 00:38:58
894
原创 短视频?文化自信?推荐算法竟然能助推我文化自信?!
作者这几年突然意识到,文化是有力量的、有魅力的,是传承的。不知道是因为工作、情感、学习,还是经历或者短视频等人工智能算法等多因素的影响,我想应该是都有的,毕竟量变才能引起质变呢。作者打算重拾语文教材,探讨背后的生活智慧。
2024-10-19 00:58:19
896
1
原创 JAVA软开-面试经典问题(6)-equals与hashcode方法
hashcode不同,对应的对象一定不同;hashcode相同,对应的对象也不一定相同(可能存在哈希冲突);equals相同的对象,hashcode是相同的
2024-10-12 22:36:26
593
原创 String字符串 && StringBuilder之常用API
字符串是JAVA语言中十分重要的数据结构,它拥有灵活的使用方法和封装好的的API,帮助开发者能够快速上手,这也是JAVA语言的独特之处。相应地,String类、StringBuilder等字符串的使用也是互联网大厂笔试面试、银行等国企面试的重要考察内容
2024-10-07 18:01:31
524
原创 Arrays常用API
本文主要总结了JAVA的Arrays工具类的常见使用方法,该工具类在机试刷题、面试过程中经常被问到,建议自己阅读完实践实践。
2024-09-28 23:26:20
713
原创 JAVA-软开-常见八股文(1)-数据库相关
布隆过滤器的作用是某个 key 不存在,那么就一定不存在,它说某个 key 存在,那么很大可能是存在(存在一定的误判率)。于是我们可以在缓存之前再加一层布隆过滤器,在查询的时候先去布隆过滤器查询 key 是否存在,如果不存在就直接返回。全外连接(FULL OUTER JOIN)则返回左边表和右边表的所有记录,即使没有匹配的行也不会被过滤掉。的情况,那么就会导致大量的请求直接打在数据库上面,导致数据库压力巨大,如果在高并发的情况下,可能。3、搭建Redis集群,提高Redis的容灾性,防止Redis的宕机。
2023-11-04 15:52:50
399
原创 JAVA-银行软开-常见八股文-(3)String StringBuilder区别及常用方法
JAVA-银行软开-常见八股文(3)-Sring 及 StringBuilder的区别,以及常见的方法
2023-05-14 21:29:54
2221
原创 Pytorch深度学习实践-刘二大人-07处理多维特征的输入
在此之前构造的网络模型,输入输出均是一维的。本节主要变化的是处理输入数据为多维情况时:改变的是输入的维度m和输出维度n:torch.nn.Linear(m,n)补充:矩阵乘法就是对于维度进行的变换,引入矩阵A,使得X从N维变成M维接下来按照网络模型来说,本节进行变化的是第1部分数据加载和第2部分设计模型:1.准备数据集:2.设计网络模型:实现的代码为:最后完整的代码为:...
2022-05-31 16:15:21
331
原创 Pytorch深度学习实践-刘二大人-06pytorch实现逻辑回归模型
import matplotlib.pyplot as pltimport torchimport matplotlib.pyplot as plimport numpy as npx_data = torch.Tensor([[1.0], [2.0], [3.0]])y_data = torch.Tensor([[0], [0], [1]])class LogisticRegressionModel(torch.nn.Module): # 构造函数:初始化对象默...
2022-05-27 11:42:51
466
原创 Pytorch深度学习实践-刘二大人-05pytorch实现线性模型
Pytorch的实现流程为:本节的课上代码为:import matplotlib.pyplot as pltimport torchx_data = torch.tensor([[1.0], [2.0], [3.0]]) # 3*1,1指的是维度,3是样本数y_data = torch.tensor([[2.0], [4.0], [6.0]]) # 3*1loss_list = []class LinearMode(torch.nn.Module): def __i
2022-05-16 18:21:52
291
原创 PyTorch深度学习实践-刘二大人-04反向传播作业
import matplotlib.pyplot as pltimport torch# y = w1*x2 + w2 * x + b,注意超参数学习率的设置,这里设置为0.01x_data = [1, 2, 3]y_data = [2, 4, 6]loss_list = []w1 = torch.Tensor([1])w2 = torch.Tensor([1])b = torch.Tensor([1])w1.requires_grad = Truew2.requir...
2022-05-15 11:51:10
188
原创 Pytorch深度学习实践-刘二大人-03反向传播demo
import matplotlib.pyplot as pltimport torch# y = w*xx_data = [1, 1.8, 2.5, 3.0]y_data = [2, 4, 6.9, 7.5]loss_list = []w = torch.Tensor([0.5])w.requires_grad = Truedef forward(x): return x * w #W是tensor,tensor的运算后是建立计算图def loss(x,.
2022-05-15 11:20:27
333
原创 Pytorch深度学习实践-刘二大人-02梯度下降和随机梯度下降
梯度下降法:import matplotlib.pyplot as pltx_data = [1.0, 2.0, 3.0, 4.0]y_data = [2.0, 4.0, 6.0, 8.0]loss_list = []w = 1.0def forward(x): return w*xdef cost(xs, ys): sum = 0 for x, y in zip(xs, ys): pre_y = forward(x) ..
2022-05-12 15:32:24
369
原创 Pytorch深度学习实践-刘二大人-01线性模型作业
import numpy as npimport matplotlib.pyplot as pltx_data = [1, 2, 3, 4]y_data = [2, 4, 6, 8]w_list = np.arange(0.0, 4.1, 0.1)b_list = np.arange(-2.0, 2.1, 0.1)w, b = np.meshgrid(w_list, b_list)def forward(x): return x * w + bdef loss(x, y.
2022-05-11 09:07:46
424
原创 安装Anconda教程
1、下载https://www.anaconda.com/download/Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror2、 安装流程这里将第一项勾选,不需要再去配环境3、验证运行cmd,输入python进入Python编辑界面即可验证安装成功。...
2021-11-11 15:19:19
1377
原创 JS邮箱验证 正则表达式
/*校验邮件地址是否合法 */function IsEmail(str) { var reg=/^\w+@[a-zA-Z0-9]{2,10}(?:\.[a-z]{2,4}){1,3}$/; return reg.test(str);}
2021-05-14 20:23:54
376
原创 Unable to preventDefault inside passive event listener due to target being treated as passive
最近在用HBuilderx 开发MUI项目时,控制台总是出现Unable to preventDefault inside passive event listener due to target being treated as passive..,查阅后可知是对于监听器的默认值没有进行处理解决方法是:在mui.css和mui.min.css文件中添加下面代码即可*{touch-action: none;}...
2021-05-12 15:27:17
315
原创 Multiple annotations found at this line: - Referenced file contains errors (http://www.springframew.
最近在做java web项目,使用SSM框架,IDE是eclipse。有时候发现一些配置文件(.xml文件)莫名奇妙会有红色小×号,虽然不影响项目使用,但看上去还是很别扭。一、解决Eclipse中XML最上边报错Multiple annotations found at this line可以参考:https://blog.csdn.net/weixin_43235147/article/details/105016351二、快捷这个有点玄学,去相应的xml文件中,增加个空格删除再保存
2021-05-11 20:44:11
2006
原创 org.springframework.beans.factory.BeanCreationException:sqlSessionFactory创建失败
配置文件出现问题,报错的原因在于创建sqlsessionfactroy失败(这个坑确实比较隐晦)Context initialization failedorg.springframework.beans.factory.BeanCreationException: Error creating bean with name 'sqlSessionFactory' defined in class path resource [applicationContext.xml]: Initializat
2021-05-06 22:07:55
1484
原创 反转问题-C语言字符串反转和数组反转
下面是字符数组的反转:#include <stdio.h>#include<string.h>#define MAX 20 //字符串问题,scanf碰到空格或者回车结束。gets可以得到空格的字符串,回车结束 int main(){ char a[MAX],temp; int i,length ; // scanf("%s",a); gets(a);// 0 1 2 3 4 5 ...n-3 n-2 n-1// i n-i-1 length=strle
2021-04-13 13:08:47
251
原创 利用筛选法求素数
筛选法的基本思想:利用凡是2的任意倍数的数都不是素数,那么剩下的就是素数。利用标记法,假设求MAXNUM=100个数里的所有素数,初始化时将所有数的标记位暂时赋值为1;然后将2的任意倍数的数的标记位暂时赋成0;最后输出标记位为1的数,即所求的素数。#include<stdio.h>#define MAXNUM 101 int main(){ int n[MAXNUM]={0}; int i,j; for(i=1;i<MAXNUM;i++){ //必须得初始化,将每个.
2021-04-10 23:03:00
908
原创 输入年月日,输出星期几
输入:年月日输出:周几备注:从1月1日开始算起,默认是周一。思想就是算出总的天数模7即可#include<stdio.h>//输入一个年月日 判断今天是星期几//已知1月1日是周一 int main(){ int year,month,day,sum=0; int week,sumDay=0; int mmonth[]={31,28,31,30,31,30,31,31,30,31,30,31}; scanf("%d %d %d",&year...
2021-04-10 22:55:53
5821
原创 最大公约数和最小公倍数
#include<stdio.h>/*最大公约数和最小公倍数*/int gcd(int a ,int b){ return b?gcd(b,a%b):a; } int lcm(int a,int b){ return a/gcd(a,b)*b;}int main(){ int a,b; scanf("%d %d",&a,&b); printf("最大公约数:%d\n",gcd(a,b)); printf("最小公倍数是:%d",lcm(a,b)); .
2021-04-10 22:46:38
86
【软考-高级架构师】软考架构设计师考试中的经典题目
2025-08-30
java实现词法分析器——编译原理实验
2021-04-13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅