01 神经网络和深度学习
第一周 深度学习概论
1.1 欢迎
一、学习内容
- 神经网络和深度学习
- 深度神经网络提升:超参调参,正则,优化
- 结构化机器学习工程
- 卷积神经网络
- 自然语言处理:建立序列模型
1.2 什么是神经网络
一、房价预测
- 样本分布示意图
- 最简单的神经网络
- ReLU函数
- 一个复杂的神经网络的示意
1.3 用神经网络进行监督学习
一、监督学习
- 监督学习举例
(1) 房价预测(标准神经网络)
(2) 在线广告(标准神经网络)
(3) 图像识别(卷积神经网络)
(4) 语音识别(序列数据)(循环神经网络)
(5) 机器翻译(序列数据)(循环神经网络)
(6) 自动驾驶(复杂混合神经网络) - 神经网络架构举例
- 结构化数据和非结构化数据
非结构化数据主要包括音频、图像和文本等类型的数据。
1.4 为什么深度学习会兴起
- 表现性能和数据量关系图
规模推动深度学习进程,其中规模指数据规模和神经网络规模。 - 当数据规模不大时,各类方法性能排名不确定。只有当数据规模较大时,才能体现神经网络的有点。
- ReLU和sigmoid激活函数相比,前者可让梯度下降法更快,因为后者在正数下梯度近乎于0.
- 流程
1.5 关于这门课
一、 本周课程内容
- 引言
- 神经网络编程基础
- 单隐层神经网络
- 深度神经网络