组合数学

排列组合

圆 排 列 : n 个 中 选 k 个 组 成 一 个 圈 的 方 案 数 : A n k k \blue{圆排列}:n个中选k个组成一个圈的方案数:\red{\frac{A_{n}^k}{k}} nkkAnk
项 链 排 列 : A n k 2 k \blue{项链排列}:\red{\frac{A_{n}^k}{2k}} 2kAnk
错 位 排 列 : n 个 数 的 所 有 错 排 方 案 数 的 递 推 公 式 为 f ( n ) = ( n − 1 ) ∗ ( f ( n − 1 ) + f ( n − 2 ) ) , 前 几 项 为 0 、 1 、 2 、 9 、 44 、 265 \blue{错位排列}:n个数的所有错排方案数的递推公式为\red{f(n)=(n-1)*(f(n-1)+f(n-2))},前几项为0、1、2、9、44、265 nf(n)=(n1)(f(n1)+f(n2)),012944265
多 重 排 列 : 设 S = { n 1 ∗ a 1 , n 2 ∗ a 2 , . . . , n k ∗ a k } , 则 所 有 的 方 案 数 为 n ! n 1 ! ∗ n 2 ! ∗ . . . ∗ n k ! \blue{多重排列}:设S=\{n1*a1,n2*a2,...,nk*ak\},则所有的方案数为\red{\frac{n!}{n1!*n2!*...*nk!}} S={n1a1,n2a2,...,nkak}n1!n2!...nk!n!
不 相 邻 组 合 : [ 1 , n ] 个 中 选 k 个 组 成 不 相 邻 的 排 列 的 方 案 数 为 : C n − k + 1 k \blue{不相邻组合}:[1,n]个中选k个组成不相邻的排列的方案数为:\red{C_{n-k+1}^k} [1,n]kCnk+1k
可 重 组 合 : 设 S = { n 1 ∗ a 1 , n 2 ∗ a 2 , . . . , n k ∗ a k } , 在 S 中 选 r 个 , 则 所 有 的 方 案 数 为 C r + k − 1 k − 1 \blue{可重组合}:设S=\{n1*a1,n2*a2,...,nk*ak\},在S中选r个,则所有的方案数为\red{C_{r+k-1}^{k-1}} S={n1a1,n2a2,...,nkak}SrCr+k1k1

方 法 : 隔 板 法 , 捆 绑 法 . . . 方法:\green{隔板法,捆绑法...} ...

扩 展 : 扩展: :
二 项 式 定 理 : ( a + b ) n = ∑ k = 0 n C n k a n − k b k \blue{二项式定理}:\red{(a+b)^n=\sum_{k=0}^nC_n^ka^{n-k}b^k} (a+b)n=k=0nCnkankbk
多 项 式 定 理 : ( x 1 + x 2 + . . . + x k ) n = ∑ n 1 + n 2 + . . . + n k = n n ! n 1 ! n 2 ! . . . n k ! ∏ i = 1 k x i n i \blue{多项式定理}:\red{(x1+x2+...+xk)^n=\sum_{n1+n2+...+nk=n}\frac{n!}{n1!n2!...nk!}\prod_{i=1}^kx_i^{ni}} (x1+x2+...+xk)n=n1+n2+...+nk=nn1!n2!...nk!n!i=1kxini
格 路 问 题 : ( 0 , 0 ) 点 走 到 ( m , n ) 点 的 方 案 数 为 C m + n n \blue{格路问题}:(0,0)点走到(m,n)点的方案数为\red{C_{m+n}^n} (0,0)(m,n)Cm+nn

母函数

普通型母函数

主 要 求 组 合 的 方 案 数 。 主要求组合的方案数。
形 如 a 0 + a 1 x 1 + a 2 x 2 + . . . + a n x n 形如\red{a_0+a_1x^1+a_2x^2+...+a_nx^n} a0+a1x1+a2x2+...+anxn

指数型母函数

主 要 求 多 重 排 列 数 。 主要求多重排列数。
形 如 a 0 + a 1 x 1 ! + a 2 x 2 2 ! + . . . a n x n n ! 形如\red{a_0+\frac{a_1x}{1!}+\frac{a_2x^2}{2!}+...\frac{a_nx^n}{n!}} a0+1!a1x+2!a2x2+...n!anxn

特殊的数

斐波那契数

递 推 式 : f ( n ) = f ( n − 1 ) + f ( n − 2 ) \blue{递推式}:f(n)=f(n-1)+f(n-2) f(n)=f(n1)+f(n2)
二 阶 常 系 数 递 归 公 式 : f ( n ) = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] \blue{二阶常系数递归公式}:f(n)=\frac{1}{\sqrt 5}[(\frac{1+\sqrt 5}{2})^n-(\frac{1-\sqrt 5}{2})^n] f(n)=5 1[(21+5 )n(215 )n]

前 几 项 为 1 、 1 、 2 、 3 、 5 、 8... 前几项为1、1、2、3、5、8... 112358...

卡特兰数

常 见 公 式 : \blue{常见公式:}

  • H n = C 2 n n n + 1 H_n=\frac{C_{2n}^n}{n+1} Hn=n+1C2nn
  • H n = H n − 1 ( 4 n − 2 ) n + 1 H_n=\frac{H_{n-1}(4n-2)}{n+1} Hn=n+1Hn1(4n2)
  • H n = 1      ( n = 0 ∣ ∣ n = 1 ) H_n=1 \;\;(n=0||n=1) Hn=1(n=0n=1)
    H n = ∑ i = 1 n H n − i H i − 1 ( n ≥ 2 ) H_n=\sum_{i=1}^nH_{n-i}H_{i-1} (n\geq 2) Hn=i=1nHniHi1(n2)
  • H n = C 2 n n − C 2 n n − 1 H_n=C_{2n}^n-C_{2n}^{n-1} Hn=C2nnC2nn1

前 几 项 为 : 1 、 1 、 2 、 5 、 14 、 42 、 132... 前几项为:1、1、2、5、14、42、132... 11251442132...

斯特林数

第一类Stirling数

递 推 式 : S u ( n , k ) = S u ( n − 1 , k − 1 ) + ( n − 1 ) ∗ S u ( n − 1 , k )        S u ( 0 , 0 ) = 1 \blue{递推式}:\red{S_u(n,k)=S_u(n-1,k-1)+(n-1)*S_u(n-1,k)}\;\;\;S_u(0,0)=1 Su(n,k)=Su(n1,k1)+(n1)Su(n1,k)Su(0,0)=1

第二类Stirling数

递 推 式 : S ( n , k ) = S ( n − 1 , k − 1 ) + k ∗ S ( n − 1. k )        S ( 0 , 0 ) = 1 \blue{递推式}:\red{S(n,k)=S(n-1,k-1)+k*S(n-1.k)}\;\;\;S(0,0)=1 S(n,k)=S(n1,k1)+kS(n1.k)S(0,0)=1

线 性 公 式 : S ( n , k ) = 1 k ! ∑ i = 0 k ( − 1 ) i C k i ( k − i ) n \blue{线性公式}:\red{S(n,k)=\frac{1}{k!}\sum_{i=0}^k(-1)^iC_k^i(k-i)^n} 线S(n,k)=k!1i=0k(1)iCki(ki)n

贝尔数

递 推 式 : B n + 1 = ∑ k = 0 n C n k B k \blue{递推式}:\red{B_{n+1}=\sum_{k=0}^nC_n^kB_k} Bn+1=k=0nCnkBk

根 据 第 二 类 斯 特 林 数 : B n = ∑ k = 0 n S ( n , k ) \blue{根据第二类斯特林数}:\red{B_n=\sum_{k=0}^nS(n,k)} Bn=k=0nS(n,k)

拓 展 : 贝 尔 三 角 形 求 解 。 拓展:贝尔三角形求解。

前 几 项 为 : 1 、 1 、 2 、 5 、 15 、 52 、 203... 前几项为:1、1、2、5、15、52、203... 11251552203...

伯努利数

等 幂 求 和 : \blue{等幂求和}: :
S m n = 1 m + 1 ∑ k = 0 m C m + 1 k n m − k + 1 S_mn=\frac{1}{m+1}\sum_{k=0}^mC_{m+1}^kn^{m-k+1} Smn=m+11k=0mCm+1knmk+1

∑ i = 1 n i k = 1 k + 1 ∑ i = 1 k + 1 C k + 1 i B k − i + 1 ( n + 1 ) i \red{\sum_{i=1}^ni^k=\frac{1}{k+1}\sum_{i=1}^{k+1}C_{k+1}^iB_{k-i+1}(n+1)^i} i=1nik=k+11i=1k+1Ck+1iBki+1(n+1)i

递 推 式 : ∑ k = 0 n B k C n + 1 k = 0        ( B 0 = 1 ) \blue{递推式}:\red{\sum_{k=0}^nB_kC_{n+1}^k=0}\;\;\;(B_0=1) k=0nBkCn+1k=0(B0=1)

B n = − 1 n + 1 [ C n + 1 0 B 0 + C n + 1 1 B 1 + . . . + C n + 1 n − 1 B n − 1 ] \red{B_n=-\frac{1}{n+1}[C_{n+1}^0B0+C_{n+1}^1B1+...+C_{n+1}^{n-1}B_{n-1}]} Bn=n+11[Cn+10B0+Cn+11B1+...+Cn+1n1Bn1]

前 几 项 为 : 1 、 − 1 2 、 1 6 、 0 、 1 30 . . . 前几项为:1、-\frac{1}{2}、\frac{1}{6}、0、\frac{1}{30}... 121610301...

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值