HDU 6470 Count 矩阵快速幂优化线性递推

HDU 6470 Count 矩阵快速幂优化线性递推


传送门: http://acm.hdu.edu.cn/showproblem.php?pid=6470

题意

已 知 f ( 1 ) = 1 , f ( 2 ) = 2 , 且 f ( n ) = f ( n − 1 ) + 2 f ( n − 2 ) + n 3      ( m o d      1234567789 ) 已知f(1) = 1, f(2) =2,且f(n)=f(n-1)+2f(n-2)+n^3\;\;(mod\;\;1234567789) f(1)=1,f(2)=2f(n)=f(n1)+2f(n2)+n3(mod1234567789)

思路

对 于 线 性 递 推 , 仿 照 快 速 幂 , 我 们 可 以 用 矩 阵 快 速 幂 优 化 ( 这 就 是 线 代 吗 ? 爱 了 爱 了 ) 。 对于线性递推,仿照快速幂,我们可以用矩阵快速幂优化(这就是线代吗?爱了爱了)。 线仿线

考 虑 F n 为 第 n 个 矩 阵 , 那 就 需 要 构 造 新 的 “ 递 推 矩 阵 ” 。 考虑F_n为第n个矩阵,那就需要构造新的“递推矩阵”。 Fnn

因 为 递 推 中 有 个 f n 中 n 3 , 所 以 f n − 1 中 需 要 有 ( n − 1 ) 3 , 结 合 二 项 式 定 理 可 得 : 因为递推中有个f_n中n^3,所以f_{n-1}中需要有(n-1)^3,结合二项式定理可得: fnn3fn1(n1)3

n 3 = [ ( n − 1 ) + 1 ] 3 = C 3 0 ( n − 1 ) 3 + C 3 1 ( n − 1 ) 2 + C 3 2 ( n − 1 ) 1 + C 3 3 ( n − 1 ) 0 n^3=[(n-1)+1]^3=C_{3}^0(n-1)^3+C_3^1(n-1)^2+C_{3}^2(n-1)^1+C_3^3(n-1)^0 n3=[(n1)+1]3=C30(n1)3+C31(n1)2+C32(n1)1+C33(n1)0

所 以 我 们 的 F n 中 需 要 有 6 个 元 素 , 即 : 所以我们的F_n中需要有6个元素,即: Fn6:
F n = [ f n f n − 1 n 3 n 2 n 1 ] F_n=\begin{bmatrix} f_n\\ f_{n-1}\\ n^3\\ n^2\\ n\\ 1 \end{bmatrix} Fn=fnfn1n3n2n1

而 我 们 的 F n − 1 矩 阵 为 : 而我们的F_{n-1}矩阵为: Fn1:

F 3 = [ f n − 1 f n − 2 ( n − 1 ) 3 ( n − 1 ) 2 ( n − 1 ) 1 ] F_3=\begin{bmatrix} f_{n-1}\\ f_{n-2}\\ (n-1)^3\\ (n-1)^2\\ (n-1)\\ 1 \end{bmatrix} F3=fn1fn2(n1)3(n1)2(n1)1

然 后 根 据 这 F n 和 F n − 1 可 以 求 出 递 推 矩 阵 , 设 该 6 × 6 的 矩 阵 的 每 一 个 元 素 都 为 未 知 数 , 然 后 再 自 行 推 出 , 即 : 然后根据这F_n和F_{n-1}可以求出递推矩阵,设该6\times 6的矩阵的每一个元素都为未知数,然后再自行推出,即: FnFn16×6

[ f n f n − 1 n 3 n 2 n 1 ] = [ 1 2 1 3 3 1 1 0 0 0 0 0 0 0 1 3 3 1 0 0 0 1 2 1 0 0 0 0 1 1 0 0 0 0 0 1 ] × [ f n − 1 f n − 2 ( n − 1 ) 3 ( n − 1 ) 2 ( n − 1 ) 1 ] \begin{bmatrix} f_n\\ f_{n-1}\\ n^3\\ n^2\\ n\\ 1 \end{bmatrix}=\begin{bmatrix} 1& 2& 1& 3 & 3 &1 \\ 1& 0& 0& 0& 0& 0\\ 0& 0& 1& 3& 3& 1\\ 0& 0& 0& 1& 2 &1 \\ 0&0 & 0 & 0 & 1& 1\\ 0& 0 &0 & 0 & 0 &1 \end{bmatrix} \times \begin{bmatrix} f_{n-1}\\ f_{n-2}\\ (n-1)^3\\ (n-1)^2\\ (n-1)\\ 1 \end{bmatrix} fnfn1n3n2n1=110000200000101000303100303210101111×fn1fn2(n1)3(n1)2(n1)1

矩 阵 递 推 就 是 上 面 式 子 , 然 后 可 以 用 原 始 矩 阵 F 3 推 出 F n ( n ≥ 3 ) 矩阵递推就是上面式子,然后可以用原始矩阵F_3推出F_n(n\ge3) F3Fnn3

[ f n f n − 1 n 3 n 2 n 1 ] = [ 1 2 1 3 3 1 1 0 0 0 0 0 0 0 1 3 3 1 0 0 0 1 2 1 0 0 0 0 1 1 0 0 0 0 0 1 ] n − 2 × [ f 2 f 1 2 3 2 2 2 1 ] \begin{bmatrix} f_n\\ f_{n-1}\\ n^3\\ n^2\\ n\\ 1 \end{bmatrix}=\begin{bmatrix} 1& 2& 1& 3 & 3 &1 \\ 1& 0& 0& 0& 0& 0\\ 0& 0& 1& 3& 3& 1\\ 0& 0& 0& 1& 2 &1 \\ 0&0 & 0 & 0 & 1& 1\\ 0& 0 &0 & 0 & 0 &1 \end{bmatrix}^{n-2} \times \begin{bmatrix} f_{2}\\ f_{1}\\ 2^3\\ 2^2\\ 2\\ 1 \end{bmatrix} fnfn1n3n2n1=110000200000101000303100303210101111n2×f2f1232221

所 以 说 线 性 递 推 可 以 用 矩 阵 快 速 幂 优 化 。 所以说线性递推可以用矩阵快速幂优化。 线

但 是 ! 最 近 被 m o d 坑 死 了 , 如 果 在 矩 阵 乘 法 中 每 次 都 用 m o d , 大 概 最 高 会 有 4 秒 , 但 是 先 判 断 在 m o d 的 话 只 有 两 秒 , 足 足 差 了 2 秒 ! ! ! 模 运 算 是 真 的 太 慢 了 。 。 。 \red{但是!最近被mod坑死了,如果在矩阵乘法中每次都用mod,大概最高会有4秒,但是先判断在mod的话只有两秒,足足差了2秒!!!模运算是真的太慢了。。。} modmod4mod2

Code (967MS)

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pdd;

#define INF 0x3f3f3f3f
#define lc u << 1
#define rc u << 1 | 1
#define mm (l + r) / 2
#define mid (t[u].l + t[u].r) / 2
#define lowbit(x) x & (-x)
#define mem(a, b) memset(a , b , sizeof(a))
#define FOR(i, x, n) for(int i = x;i <= n; i++)

// const ll mod = 998244353;
// const ll mod = 1e9 + 7;
// const double eps = 1e-6;
// const double PI = acos(-1);
// const double R = 0.57721566490153286060651209;

ll mod = 123456789;

struct Martix{
    ll m[6][6];
};

Martix ans;

Martix E;

Martix operator * (Martix a, Martix b) {
    Martix c;
    mem(c.m, 0);
    for (int i = 0; i < 6; i++) {
        for (int j = 0; j < 6; j++) {
            for (int k = 0; k < 6; k++) {
                c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j]);
                if(c.m[i][j] > mod)
                    c.m[i][j] %= mod;
            }
        }
    }
    return c;
}

Martix quick_pow_Martix(ll n) {
    Martix base = E;
    mem(ans.m, 0);
    ans.m[0][0] = 2;
    ans.m[1][0] = 1;
    ans.m[2][0] = 8;
    ans.m[3][0] = 4;
    ans.m[4][0] = 2;
    ans.m[5][0] = 1;
    while(n) {
        if(n & 1)
            ans = base * ans;
        base = base * base;
        n >>= 1;
    }
    return ans;
}

void solve() {
    E.m[0][0] = 1; E.m[0][1] = 2; E.m[0][2] = 1; E.m[0][3] = 3; E.m[0][4] = 3; E.m[0][5] = 1;
    E.m[1][0] = 1;
    E.m[2][2] = 1; E.m[2][3] = 3; E.m[2][4] = 3; E.m[2][5] = 1;
    E.m[3][3] = 1; E.m[3][4] = 2; E.m[3][5] = 1;
    E.m[4][4] = 1; E.m[4][5] = 1;
    E.m[5][5] = 1;
    int T;
    scanf("%d",&T);
    while(T--) {
        ll n;
        scanf("%lld",&n);

        // ans = quick_pow_Martix(n - 2);
        printf("%lld\n",quick_pow_Martix(n - 2).m[0][0]);
    }
}

signed main() {
    ios_base::sync_with_stdio(false);
    //cin.tie(nullptr);
    //cout.tie(nullptr);
#ifdef FZT_ACM_LOCAL
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w", stdout);
    signed test_index_for_debug = 1;
    char acm_local_for_debug = 0;
    do {
        if (acm_local_for_debug == '$') exit(0);
        if (test_index_for_debug > 20)
            throw runtime_error("Check the stdin!!!");
        auto start_clock_for_debug = clock();
        solve();
        auto end_clock_for_debug = clock();
        cout << "Test " << test_index_for_debug << " successful" << endl;
        cerr << "Test " << test_index_for_debug++ << " Run Time: "
             << double(end_clock_for_debug - start_clock_for_debug) / CLOCKS_PER_SEC << "s" << endl;
        cout << "--------------------------------------------------" << endl;
    } while (cin >> acm_local_for_debug && cin.putback(acm_local_for_debug));
#else
    solve();
#endif
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值