已知 a [ 0 ] [ 1 ] = 233 , a [ 0 ] [ 2 ] = 2333 , a [ 0 ] [ 2 ] = 23333 ⋯ ( a [ 0 ] [ i ] = a [ 0 ] [ i − 1 ] ∗ 10 + 3 ) a[0][1]=233,a[0][2]=2333,a[0][2]=23333\cdots(a[0][i]=a[0][i-1]*10+3) a[0][1]=233,a[0][2]=2333,a[0][2]=23333⋯(a[0][i]=a[0][i−1]∗10+3)。
又 a [ i ] [ j ] = a [ i − 1 ] [ j ] + a [ i ] [ j − 1 ] a[i][j]=a[i-1][j]+a[i][j-1] a[i][j]=a[i−1][j]+a[i][j−1],现给你n个数, a [ 0 ] [ 1 ] ∼ a [ 0 ] [ n ] a[0][1] \sim a[0][n] a[0][1]∼a[0][n],最后求 a [ n ] [ m ] % 10000007 a[n][m]\%10000007 a[n][m]%10000007
【数据范围】
n ≤ 10 , m ≤ 1000000000 , 0 ≤ a i , 0 ≤ 1000000000 n\leq 10,m\leq 1000000000,0\leq a_{i,0}\leq 1000000000 n≤10,m≤1000000000,0≤ai,0≤1000000000。
【分析】
[ a 0 , 0 a 0 , 1 ⋯ a 0 , m a 1 , 0 a 1 , 1 ⋯ a 1 , m ⋮ ⋮ ⋱ ⋮ a n , 0 a n , 1 ⋯ a n , m ] \begin{bmatrix} a_{0,0}&a_{0,1}&\cdots &a_{0,m} \\ a_{1,0}&a_{1,1}&\cdots &a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,0}& a_{n,1}& \cdots & a_{n,m} \\ \end{bmatrix} ⎣⎢⎢⎢⎡a0,0a1,0⋮an,0a0,1a1,1⋮an,1⋯⋯⋱⋯a0,ma1,m⋮an,m⎦⎥⎥⎥⎤
对于上述 n × m