HDU - 5015 矩阵快速幂(构造矩阵)

该博客介绍了如何使用矩阵快速幂方法解决HDU 5015题目的算法,该题目涉及矩阵递推关系。通过构建特定的12x12矩阵,并进行矩阵快速幂运算,可以高效地计算出给定n和m时的矩阵乘法结果,最终求得a[n][m]对10000007取模的值。
摘要由CSDN通过智能技术生成

【题目链接】


已知 a [ 0 ] [ 1 ] = 233 , a [ 0 ] [ 2 ] = 2333 , a [ 0 ] [ 2 ] = 23333 ⋯ ( a [ 0 ] [ i ] = a [ 0 ] [ i − 1 ] ∗ 10 + 3 ) a[0][1]=233,a[0][2]=2333,a[0][2]=23333\cdots(a[0][i]=a[0][i-1]*10+3) a[0][1]=233,a[0][2]=2333,a[0][2]=23333(a[0][i]=a[0][i1]10+3)
a [ i ] [ j ] = a [ i − 1 ] [ j ] + a [ i ] [ j − 1 ] a[i][j]=a[i-1][j]+a[i][j-1] a[i][j]=a[i1][j]+a[i][j1],现给你n个数, a [ 0 ] [ 1 ] ∼ a [ 0 ] [ n ] a[0][1] \sim a[0][n] a[0][1]a[0][n],最后求 a [ n ] [ m ] % 10000007 a[n][m]\%10000007 a[n][m]%10000007


【数据范围】
n ≤ 10 , m ≤ 1000000000 , 0 ≤ a i , 0 ≤ 1000000000 n\leq 10,m\leq 1000000000,0\leq a_{i,0}\leq 1000000000 n10,m1000000000,0ai,01000000000


【分析】
[ a 0 , 0 a 0 , 1 ⋯ a 0 , m a 1 , 0 a 1 , 1 ⋯ a 1 , m ⋮ ⋮ ⋱ ⋮ a n , 0 a n , 1 ⋯ a n , m ] \begin{bmatrix} a_{0,0}&a_{0,1}&\cdots &a_{0,m} \\ a_{1,0}&a_{1,1}&\cdots &a_{1,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,0}& a_{n,1}& \cdots & a_{n,m} \\ \end{bmatrix} a0,0a1,0an,0a0,1a1,1an,1a0,ma1,man,m
对于上述 n × m

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值