Codeforces-235E-Number Challenge 莫比乌斯反演 + 记忆化gcd

Codeforces-235E-Number Challenge 莫比乌斯反演 + 记忆化gcd


传送门: https://codeforces.ml/problemset/problem/235/E

题意

求 解 ∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i ⋅ j ⋅ k ) 求解\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(i\cdot j\cdot k) i=1aj=1bk=1cd(ijk)

思路

前 置 技 能 : d ( i ⋅ j ) = ∑ x ∣ i ∑ y ∣ j [ g c d ( x , y ) = 1 ] 前置技能:\red{d(i\cdot j)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]} d(ij)=xiyj[gcd(x,y)=1]

∑ i = 1 a ∑ j = 1 b ∑ k = 1 c d ( i ⋅ j ⋅ k ) \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^cd(i\cdot j\cdot k) i=1aj=1bk=1cd(ijk)

∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ∑ x ∣ i ∑ y ∣ j ∑ z ∣ k [ g c d ( i , j ) = 1 ] [ g c d ( i , k ) = 1 ] [ g c d ( j , k ) = 1 ] \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\sum_{x|i}\sum_{y|j}\sum_{z|k}[gcd(i,j)=1][gcd(i,k)=1][gcd(j,k)=1] i=1aj=1bk=1cxiyjzk[gcd(i,j)=1][gcd(i,k)=1][gcd(j,k)=1]

改 变 枚 举 顺 序 : 改变枚举顺序:

∑ x = 1 a ∑ y = 1 b ∑ z = 1 c ⌊ a x ⌋ ⌊ b y ⌋ ⌊ c z ⌋ [ g c d ( x , y ) = 1 ] [ g c d ( x , z ) = 1 ] [ g c d ( y , z ) = 1 ] \sum_{x=1}^a\sum_{y=1}^b\sum_{z=1}^c\left \lfloor \frac{a}{x} \right \rfloor \left \lfloor \frac{b}{y} \right \rfloor \left \lfloor \frac{c}{z} \right \rfloor [gcd(x,y)=1][gcd(x,z)=1][gcd(y,z)=1] x=1ay=1bz=1cxaybzc[gcd(x,y)=1][gcd(x,z)=1][gcd(y,z)=1]

x , y , z 看 得 不 习 惯 , 还 是 换 成 i , j , k 吧 。 x,y,z看得不习惯,还是换成i,j,k吧。 x,y,zi,j,k

∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ⌊ a i ⌋ ⌊ b j ⌋ ⌊ c k ⌋ [ g c d ( i , j ) = 1 ] [ g c d ( i , k ) = 1 ] [ g c d ( j , k ) = 1 ] \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor [gcd(i,j)=1][gcd(i,k)=1][gcd(j,k)=1] i=1aj=1bk=1ciajbkc[gcd(i,j)=1][gcd(i,k)=1][gcd(j,k)=1]

∑ i = 1 a ∑ j = 1 b ∑ k = 1 c ⌊ a i ⌋ ⌊ b j ⌋ ⌊ c k ⌋ [ g c d ( i , j ) = 1 ] [ g c d ( i , k ) = 1 ] ∑ d ∣ j    d ∣ k μ ( d ) \sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c\left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor[gcd(i,j)=1][gcd(i,k)=1]\sum_{d|j\;d|k}\mu(d) i=1aj=1bk=1ciajbkc[gcd(i,j)=1][gcd(i,k)=1]djdkμ(d)

枚 举 d : 枚举d: d

∑ i = 1 a ⌊ a i ⌋ ∑ d = 1 m i n ( b , c ) μ ( d ) ∑ j = 1 ⌊ b d ⌋ ⌊ b j d ⌋ [ g c d ( i , j d ) = 1 ] ∑ k = 1 ⌊ c d ⌋ ⌊ c k d ⌋ [ g c d ( i , k d ) = 1 ] \sum_{i=1}^a\left \lfloor \frac{a}{i} \right \rfloor\sum_{d=1}^{min(b,c)}\mu(d)\sum_{j=1}^{\left \lfloor \frac{b}{d} \right \rfloor}\left \lfloor \frac{b}{jd} \right \rfloor[gcd(i,jd)=1]\sum_{k=1}^{\left \lfloor \frac{c}{d} \right \rfloor} \left \lfloor \frac{c}{kd} \right \rfloor[gcd(i,kd)=1] i=1aiad=1min(b,c)μ(d)j=1dbjdb[gcd(i,jd)=1]k=1dckdc[gcd(i,kd)=1]

枚 举 i 和 d , 先 使 g c d ( i , d ) = 1 , 在 枚 举 j , 使 g c d ( i , j ) = 1 , 即 可 使 g c d ( i , j d ) = 1 枚举i和d,先使gcd(i,d)=1,在枚举j,使gcd(i,j)=1,即可使gcd(i,jd)=1 id使gcd(i,d)=1j使gcd(i,j)=1使gcd(i,jd)=1
k 部 分 同 理 。 k部分同理。 k

在 计 算 g c d 的 过 程 中 , 用 f [ ] [ ] 记 忆 化 g c d , 会 有 很 大 的 优 化 。 在计算gcd的过程中,用f[][]记忆化gcd,会有很大的优化。 gcdf[][]gcd

Code(622MS)


#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
typedef long double ld;
typedef pair<int, int> pdd;

#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)
#define mem(a, b) memset(a , b , sizeof(a))
#define FOR(i, x, n) for(int i = x;i <= n; i++)

// const ll mod = 998244353;
// const ll mod = 1e9 + 7;
// const double eps = 1e-6;
// const double PI = acos(-1);
// const double R = 0.57721566490153286060651209;

const ll mod = 1073741824;

const int N = 2005;

int mu[N]; // 莫比乌斯函数
bool is_prime[N];
int prime[N];
int cnt;

void Init() {
    mu[1] = 1; is_prime[0] = is_prime[1] = true;
    for(int i = 2;i < N; i++) {
        if (!is_prime[i]) {
            mu[i] = -1;
            prime[++cnt] = i;
        }
        for (int j = 1; j <= cnt && i * prime[j] < N; j++) {
            is_prime[i * prime[j]] = true;
            if (i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            }
            mu[i * prime[j]] = -mu[i];
        }
    }

}
ll f[N][N];

ll gcd(ll a, ll b) {
    if(f[a][b]) return f[a][b];
    return f[a][b] = (b ? gcd(b, a % b) : a);
}

ll sum(int i, int d, int n) {
    if(!f[i][d]) gcd(i, d);
    if(f[i][d] != 1) return 0;
    ll res = 0;
    for(int j = 1;j <= n / d; j++) {
        if(!f[i][j]) gcd(i, j);
        if(f[i][j] == 1) res += n / (j * d);
    }
    return res;
}

void solve() {
    Init();
    int a, b, c;
    cin >> a >> b >> c;
    ll ans = 0;
    for(int i = 1;i <= a; i++) {
        for(int d = 1;d <= min(b, c); d++) {
            ans = (ans + (a / i) * mu[d] * sum(i, d, b) * sum(i, d, c)) % mod;
        }
    }
    cout << ans << endl;
}

signed main() {
    solve();
}


  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值