算法竞赛入门经典 DAG上的动态规划


矩形嵌套
时间限制:3000 ms | 内存限制:65535 KB
难度:4

描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5


#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 1000+1 ;
struct rectangle{
    int length ;
    int width ;
}re[maxn];

int d[maxn] , G[maxn][maxn] ;  // d[i] 顶点i 的最长路径 , G[i][j] 图
int dir[maxn] ;                //dir[i] 保存路径
int num ;                      //路径下标
int n  ;

void crate_Graph() {
    memset( G, 0 ,sizeof(G)) ;
    for (int i = 1 ; i <= n ; ++i ) {
        for( int j = 1 ; j <= n ;++j ) {
            if( (re[i].length > re[j].length && re[i].width > re[j].width) || (re[i].length > re[j].width && re[i].width > re[j].length)  )
                G[i][j] = 1 ;
        }
    }
}

int dp(int i) {
    int& ans = d[i] ; //  方便读写d[i](此不明显)
    if( ans > 0 ) {
        return ans ;  // 记忆化搜索
    }
    ans = 1 ;
    for( int j = 1 ; j <= n ; ++j ){
            if( G[i][j]) ans = max(ans , dp(j) + 1) ; // 状态转移方程 d(i) = max{d(j) +1 | (i,j)属于E}
    }
    return ans ;
}
/*
void print_ans ( int i ) {
    printf("%d ",i) ;
    for( int j = 1 ; j <= n ; ++j ) {
        if( G[i][j] && d[i] == d[j]+1) {
            print_ans(j) ;
            break ;                 // 只打印字典序最小路径
        }
    }
}
*/
/* // 打印全部路径
void print_p(int nn) {
    for( int i = 1; i  <= nn  ; ++i ){

        printf("%d ",dir[i] ) ;
    }
    printf("\n") ;
    return ;
}

void print_ans( int i ,int num ) {
    for( int j = 1 ;j <= n ; ++j ) {
        if( G[i][j]&& d[i] == d[j] + 1) {
            dir[num] = j ;
            print_ans(j, num+1) ;
        }
    }
     print_p(num-1) ;
}
*/
int main() {
    int ncase ;
    cin >> ncase ;
    while(ncase-- ) {
        scanf("%d",&n) ;
        for( int i = 1 ; i <= n ; ++i ) {
            scanf("%d%d",&re[i].length,&re[i].width) ;
        }
        crate_Graph() ;
        int maxx = 0  , init = 0 ;
        memset(d, 0 ,sizeof(d)) ;    // 初始化记忆数组
        for ( int i = 1 ; i <= n ; ++i ){
           if( maxx < dp(i) ){
            maxx = dp(i) ;
            init = i ;
           }
        }
        memset(dir,0,sizeof(dir)) ;
        printf("%d\n",maxx) ;
        /*
        dir[1] = init ;          // 打印全部路径
        print_ans( init , 2)  ;
        */
    }
    return 0 ;
}

解题报告网 [(http://acm.nyist.net/JudgeOnline/articles/?pid=nyoj16)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值