矩形嵌套
时间限制:3000 ms | 内存限制:65535 KB
难度:4
描述
有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a<c,b<d或者b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。
输入
第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽
输出
每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行
样例输入
1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2
样例输出
5
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 1000+1 ;
struct rectangle{
int length ;
int width ;
}re[maxn];
int d[maxn] , G[maxn][maxn] ; // d[i] 顶点i 的最长路径 , G[i][j] 图
int dir[maxn] ; //dir[i] 保存路径
int num ; //路径下标
int n ;
void crate_Graph() {
memset( G, 0 ,sizeof(G)) ;
for (int i = 1 ; i <= n ; ++i ) {
for( int j = 1 ; j <= n ;++j ) {
if( (re[i].length > re[j].length && re[i].width > re[j].width) || (re[i].length > re[j].width && re[i].width > re[j].length) )
G[i][j] = 1 ;
}
}
}
int dp(int i) {
int& ans = d[i] ; // 方便读写d[i](此不明显)
if( ans > 0 ) {
return ans ; // 记忆化搜索
}
ans = 1 ;
for( int j = 1 ; j <= n ; ++j ){
if( G[i][j]) ans = max(ans , dp(j) + 1) ; // 状态转移方程 d(i) = max{d(j) +1 | (i,j)属于E}
}
return ans ;
}
/*
void print_ans ( int i ) {
printf("%d ",i) ;
for( int j = 1 ; j <= n ; ++j ) {
if( G[i][j] && d[i] == d[j]+1) {
print_ans(j) ;
break ; // 只打印字典序最小路径
}
}
}
*/
/* // 打印全部路径
void print_p(int nn) {
for( int i = 1; i <= nn ; ++i ){
printf("%d ",dir[i] ) ;
}
printf("\n") ;
return ;
}
void print_ans( int i ,int num ) {
for( int j = 1 ;j <= n ; ++j ) {
if( G[i][j]&& d[i] == d[j] + 1) {
dir[num] = j ;
print_ans(j, num+1) ;
}
}
print_p(num-1) ;
}
*/
int main() {
int ncase ;
cin >> ncase ;
while(ncase-- ) {
scanf("%d",&n) ;
for( int i = 1 ; i <= n ; ++i ) {
scanf("%d%d",&re[i].length,&re[i].width) ;
}
crate_Graph() ;
int maxx = 0 , init = 0 ;
memset(d, 0 ,sizeof(d)) ; // 初始化记忆数组
for ( int i = 1 ; i <= n ; ++i ){
if( maxx < dp(i) ){
maxx = dp(i) ;
init = i ;
}
}
memset(dir,0,sizeof(dir)) ;
printf("%d\n",maxx) ;
/*
dir[1] = init ; // 打印全部路径
print_ans( init , 2) ;
*/
}
return 0 ;
}
解题报告网 [(http://acm.nyist.net/JudgeOnline/articles/?pid=nyoj16)]