###### poj 2229

POJ 2229

#include <iostream>
#include <cmath>
using namespace std;
/*
if n is odd ,  then f(n) = f(n-1) .because n is odd , add the answer must have at least a 1, and f(n-1) above all solutions
else if n is even , then f(n) = f(n-2) + f(n/2) . because n is even ,and must have at least two 1 , then f(n-2)+1+1 above all answers that include 1.
and we must calculate the number of solution (like 2,2,2,2 ==8; 2,2,4==8;4,4=8)
without 1 . then we can div 2 ,for  2/2 -> 1 .  change(1,1,1,1 ; 1,1,2;2,2 ; 4familiar == 4)
so we can get the answer  f(n) = f(n-2) + f(n/2) .
*/
int mod = 1e9 ;
const int maxn = 1e6+10;
int a[maxn] ;
int main(){
int t ;
a[1] = 1 ;
a[2] = 2 ;
for(int i = 3 ; i < maxn-9 ; ++i){
if(i&1) a[i] = a[i-1] ;
else a[i] = (a[i-2] + a[i>>1])%mod ;
}
while(cin >> t){
cout << a[t] << endl ;
}
return 0;
}


#### POJ 2229 Sumsets

2010-10-14 12:13:00

#### poj 2229 （dp 完全背包相似问题）

2016-07-24 11:28:57

#### poj 2229 Sumsets 【完全背包 or 递推】

2015-12-20 12:03:09

#### POJ2229Sumsets 递推水题

2017-04-24 20:46:56

#### poj2229【完全背包-规律Orz...】

2016-08-08 17:42:35

#### Poj 2229（dp）

2013-08-17 15:02:26

#### Sumsets POJ - 2229

2017-03-01 19:29:09

#### poj Sumsets 2229 （机智打表）

2015-12-20 20:53:55

#### poj2229

2014-04-14 10:45:44

#### POJ-2229-Sumsets

2013-04-09 19:00:54

poj 2229