浅谈拉格朗日插值法

浅谈拉格朗日插值法

好像FFT要用到,所以就学习一手

什么是插值

在离散数据的基础上补插连续的函数,使得这条连续函数经过所有离散数据点,这个过程就叫插值。

其意义在于:

插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。

理解一下:
就是把一个足球踢出去,假设球始终在一个平面上飞行,它的轨迹就可以抽象为 f ( x ) f(x) f(x) (假设这个函数至于时间有关)

现在你有一些照片,所以你可以得到某几个时间点球的位置,想要还原出这个函数 f ( x ) f(x) f(x) 的轨迹。但是你的照片数量是有限的,而函数的点是连续的所以插值的结果 g ( x ) g(x) g(x) 可能有无穷多种

插值有许多方法,包括:三角函数插值;线性插值法;牛顿插值法;拉格朗日插值法 …… 但是蒟蒻只会拉格朗日插值法

拉格朗日插值法

这个方法很简单,相当于硬性拼凑。
举个例子,现在平面上有三个点分别是 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) ( x 1 < x 2 < x 3 ) (x_1 , y_1),(x_2 , y_2),(x_3 , y_3)(x_1 < x_2 < x_3) (x1,y1),(x2,y2),(x3,y3)(x1<x2<x3),我们用这三个插值。
我们需要构造 n n n (这里是3)个函数。第 i i i 个函数满足:
{ 0 , x = x j ( j ! = i ) 1 , x = x i o t h e r s , I   d o n ′ t   c a r e \left\{\begin{matrix} 0 , x = x_j (j != i) \\ 1 , x = x_i \\ others , I \ don't \ care \end{matrix}\right. 0,x=xj(j!=i)1,x=xiothers,I dont care

这是第一个:

第二个:

第三个

然后我们发现 f ( x ) = y 1 f 1 ( x ) + y 2 f 2 ( x ) + ⋯ + y n f n ( x ) f(x) = y_1f_1(x) + y_2f_2(x) + \cdots + y_nf_n(x) f(x)=y1f1(x)+y2f2(x)++ynfn(x)

对于我们构造出来的第一 1 1 1 条曲线显然满足性质:
f 1 = ( x − x 2 ) ( x − x 3 ) ( x 1 − x 2 ) ( x 1 − x 3 ) f_1 = \dfrac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} f1=(x1x2)(x1x3)(xx2)(xx3)

进一步推广:
f i ( x ) = ∏ j ≠ i n x − x j x i − x j f_i(x) = \prod_{j \neq i} ^ {n}\dfrac{x - x^j}{x_i - x_j} fi(x)=j=inxixjxxj

然后就有了:
f ( x ) = ∑ i = 1 n y i ∗ f i ( x ) f(x) = \sum_{i = 1}^{n}y_i*f_i(x) f(x)=i=1nyifi(x)

code

#include <bits/stdc++.h>
#define fu(x , y , z) for(int x = y ; x <= z ; x ++)
#define LL long long
using namespace std;
const LL mod = 998244353;
LL n , k;
struct RE {
    LL x , y;
}re[2005];
LL read () {
    LL val = 0 , fu = 1;
    char  ch = getchar ();
    while (ch < '0' || ch > '9') {
        if (ch == '-') fu = -1;
        ch = getchar ();
    }
    while (ch >= '0' && ch <= '9') {
        val = val * 10 + (ch - '0');
        ch = getchar ();
    }
    return val * fu;
}
LL ksm (LL x , LL y) {
    LL ans = 1;
    while(y) {
        if(y&1) ans = ans * x %mod;
        x = x * x % mod;
        y >>= 1;
    }
    return ans;
}
int main () {
    LL ans = 0 , ans1;
    n = read () , k = read ();
    fu (i , 1 , n) {
        re[i].x = read () , re[i].y = read ();
    }
    fu (i , 1 , n) {
        ans1 = re[i].y;
        fu (j , 1 , n)
            if (i ^ j)
                ans1 = 1ll * (ans1 * (k - re[j].x) % mod) * ksm (re[i].x - re[j].x , mod - 2) % mod;
        ans = (ans + ans1+mod) % mod;
    }
    printf ("%lld" , ans);
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值