【大作业-5】火灾目标检测,YOLO+PyQt+MySQL

YOLO11+PyQt+MySQL,火灾目标检测模型

 1. 前言

大家好,这里是宋大水,今天给大家分享的是火灾目标模型,主要用到的技术包括YOLO目标检测模型、MySQL数据库和PyQt的检测界面。

主要的工作量有登录、注册、图片检测、视频检测和摄像头流的检测,四次对比试验(YOLOv5s,YOLOv8s,YOLO11s,YOLO12s)。为了进一步提升模型的性能,还在表现最好的yolo11s模型的基础上进行改进优化,加入了SE注意力机制修改损失函数为WIOU。

2. 项目展示

2.1 五次对比试验

PRmAPmAP50-95参数量(M)
YOLOv5s0.6370.6420.670.34117.6
YOLOv8s0.6820.5850.6480.34221.4
YOLO11s0.7290.6340.6940.3618.3
YOLO12s0.7480.5970.6730.35718.1
YOLO11+SE+WIOU0.7360.6170.7020.36318.3

选择了目前主流的v5,v8,11,12这四个模型进行训练,从表中可以看出YOLO11s的最终表现结果最好。在表现最好的yolo11s模型的基础上进行改进优化,加入了SE注意力机制修改损失函数为WIOU。

2.2 登录界面

这个界面由PyQt设计,具备两个功能,一个是登录功能,一个是注册功能,使用了MySQL数据库,因此我们在登录前首先要配置好数据库,才可以进行注册和登录,登录进去后进行目标检测功能。

2.3 检测界面

这个检测界面也是由PyQt所设计的,因为我们训练了五次,所以可以选择五个检测模型pt文件,分别是v5,v8,v11,v12和v11-se,选择需要检测的资源,例如图片,视频,摄像头和rtsp流,设置好置信度和IOU,选择是否要将检测结果保存到文件夹,然后点击下方的停止按钮即可开始推理检测。

2.4 训练结果部分展示

在这里展示一些表现最好的YOLO11s-se-wiou的重要的训练结果图片(F1曲线、P-R曲线、训练结果和训练图片)。

2.5 资源获取

大家可以点击顶端的B站视频评论区置顶链接获取相关资源。

3. 代码运行

3.1 数据集

火灾数据集_数据集-飞桨AI Studio星河社区

本实验数据集是一个火灾检测数据集,如下图所示。

3.2 python环境配置

本代码运行需要安装一些深度学习包,例如PyTorch,Torchvision,opencv,ultralytics等。

深度学习环境的三种搭建方式(彻底理解安装逻辑和步骤)

大家可以看上面这个视频学习如何安装深度学习环境。

3.3 mysql数据库

因为登录和注册功能使用到了MySQL数据库,所以我们需要安装配置下这个数据库,只需用该文件中的安装包安装mysql8数据库,然后将下面这个sql语句导入到数据库中,并且配置下LoginWindows.py文件的数据库用户名和密码即可使用。

这就是本次给大家分享的目标检测项目,如需更加详细的信息,可以看置顶的B站视频,谢谢。

### 如何将YOLOPyQt结合使用 为了实现YOLOPyQt的集成,可以按照以下方法构建应用程序: #### 1. 安装依赖库 确保安装了必要的Python包。这通常包括`opencv-python`用于图像处理以及`torch`和`tqdm`等其他可能需要的机器学习框架。 ```bash pip install opencv-python torch tqdm pyqt5 ``` #### 2. 加载并配置YOLO模型 加载预训练好的YOLO权重文件,并设置好检测参数。这部分代码可以从官方GitHub仓库获取或者基于已有的YOLO版本调整[^1]。 ```python import cv2 from ultralytics import YOLO model = YOLO('yolov8n.pt') # Load model ``` #### 3. 创建PyQt界面 设计图形用户界面(GUI),允许用户选择视频源或图片路径作为输入给YOLO进行目标识别。这里展示了一个简单的窗口布局例子[^2]。 ```python from PyQt5.QtWidgets import QApplication, QMainWindow, QPushButton, QVBoxLayout, QWidget, QLabel, QLineEdit class MainWindow(QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("YOLO Object Detection") layout = QVBoxLayout() label = QLabel("Enter image path:") line_edit = QLineEdit() button = QPushButton("Detect Objects!") layout.addWidget(label) layout.addWidget(line_edit) layout.addWidget(button) container = QWidget() container.setLayout(layout) self.setCentralWidget(container) ``` #### 4. 实现对象检测逻辑 当点击按钮时触发事件处理器,在其中调用YOLO来进行预测并将结果显示出来。注意要处理不同类型的媒体数据(如摄像头流、本地文件)[^3]。 ```python def on_button_clicked(self): img_path = self.line_edit.text() # Get input from user results = model(img_path) # Perform inference using loaded model res_plotted = results[0].plot() # Plot bounding boxes over detected objects cv2.imshow("Detected Image", res_plotted) # Show result in a window cv2.waitKey(0) button.clicked.connect(on_button_clicked) ``` 以上就是基本的工作流程;当然实际项目可能会更复杂一些,比如还需要考虑多线程运行以提高性能等问题。对于具体细节上的差异,则取决于所选用的具体YOLO变体及其对应的API接口文档说明[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值