自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 智能辅助标注——数据标注领域新突破

目前跑码地Coovally已广泛应用于制造业质检、地质灾害监测、电力行业设备监控、医学专病诊断、智慧交通、智慧园区等多样场景。“得数据者,得人工智能”,有了智能辅助标注功能的加持,Coovally将进一步拓宽应用场景,提高模型精度,助力机器视觉行业发展。

2023-01-13 11:08:44 105

原创 百亿、千亿级参数的基础模型之后,我们正在步入以数据为中心的时代?

近年来,GPT-3、CLIP、DALL-E 、Imagen、Stabile Diffusion 等基础模型的出现令人惊叹。这些模型展现出的强大生成能力和情境学习能力,在几年前都是难以想象的。本文将探讨这些大规模技术的商业化。

2023-01-10 15:18:16 36

原创 Coovally质检应用案例 | 产品外观瑕疵检测

采用机器视觉的方法可以对产品外观缺陷检测,快速且准确的识别划痕,大幅提高了生产线的效率,提高了产品的生产质量。

2023-01-06 10:22:28 29

原创 Coovally任务详解之文字识别任务

人们在生产和生活中,要处理大量的文字、报表和文本。为了减轻人们的劳动,提高处理效率,自动识别字符的技术,已经成为机器视觉应用的一个重要领域。而Coovally也能做到这一点,并且仅需5步,零代码即可完成!

2022-12-26 15:27:09 28

原创 Coovally任务详解之文字检测任务

基于机器视觉系统,可以对文字进行识别检测,例如文字印刷检测、字符检测、喷码文字缺陷检测等,Coovally针对文字检测做到了高精度和低成本,且仅需5步就可以完成一个模型!

2022-12-15 13:39:51 36

原创 Coovally任务详解之语义分割任务

我们可以将语义分割认为是像素级别的图像分类。例如,在有许多汽车的图像中,分割会将所有对象标记为汽车对象。然后,一个称为实例分割的模型能够标记一个出现在图像中的物体的独立实例。这种分割在计算对象数量的应用程序中非常有用,例如计算商城的行人流量。

2022-12-08 09:53:30 45

原创 Coovally任务详解之实例分割任务

实例分割是视觉经典四个任务中相对最难的一个,它既具备语义分割的特点,需要做到像素层面上的分类,也具备目标检测的一部分特点,即需要定位出不同实例,即使它们是同一种类。但是通过Coovally,即可轻松完成实例分割任务。

2022-12-01 10:38:04 335

原创 基于Coovally的目标检测任务详解

目标检测任务(Object Detection)是计算机视觉的主要分支之一,目的是“识别目标并给出其在图中的确切位置”,确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。但是通过Coovally,不用了解目标检测的具体算法就可轻松完成目标检测任务。

2022-11-24 10:04:25 39

原创 基于Coovally的目标检测任务详解

目标检测任务(Object Detection)是计算机视觉的主要分支之一,目的是“识别目标并给出其在图中的确切位置”,确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。但是通过Coovally,不用了解目标检测的具体算法就可轻松完成目标检测任务。

2022-11-23 13:55:12 518

原创 通过Coovally 5步完成图像分类任务!

有了Coovally,不用阅读图像分类的书籍,也不用参考大量论文,5步即可完成图像分类任务!

2022-11-16 10:46:15 65

原创 【Coovally】强大工具 | 生成工具篇

Coovally 系统提供6种生成工具,分别是生成图片分布报告、生成分类图片数据分析、生成标记图片、生成分类图片、VOC标签归一化和掩码生成。针对目标检测类和图像分类数据集,可生成分析报告;基于目标检测类数据集标签,可生成标记图片和分类图片;更改样本集标签,这几乎涵盖了所有我想要进行的图片分析。

2022-11-10 11:25:14 521

原创 【Coovally】强大工具-图像增强篇

本文将基于Coovally工具箱介绍常用的图像增强方法,Coovally 提供5类增强工具且每种增强方式包含多个子增强方式。用户使用图像增强工具(图像平滑处理,图片增强处理,色彩空间转换,边缘检测)可预览、对比和下载不同增强方式的增强图,辅助用户选择最优的增强方式增强样本集。

2022-11-08 11:10:47 692

原创 Coovally助力明厨亮灶一步到位

为帮助企业快速、低成本的将AI技术应用于升级版“明厨亮灶”,跑码地Coovally提供了零门槛、高精度的AI建模能力,帮助企业轻松构建AI模型。基于跑码地Coovally,企业仅需普通业务人员利用业余时间,即可在2-3周内从0到1训练出可用于升级版“明厨亮灶”的厨师帽识别模型,并应用到厨房场景的智能视频分析业务中。

2022-10-27 13:44:31 457 1

原创 【机器人的眼睛】机器视觉在汽车零部件检测中的应用

Coovally针对高精密制造中部件和产品的表面极微瑕疵、微结构缺陷、大范围一致性、高速高效等问题能够形成一整套有效的解决方案,体现了“以数据为中心”或“数据驱动”的AI落地技术。 是解决“实验室结果好于实际运行效果”这一痛点的核心利器。

2022-10-20 14:22:23 552

原创 大数据分析平台如何赋能智能钻井

要想知道打井打得怎么样,如何打得好、打得快,很多时候是凭经验,靠感觉。而通过引入基于井场大数据的智能化分析手段,在面向减少NPT、设计方案优选、钻头管具优选、实时参数优化、风险识别与防控等方面,均展现了巨大的应用前景。因此,智能化平台通过实现数字化、制动化、智能化的过程优化,从而让生产数据支持支持决策,从而让钻井作业向自动化、高效化、智能化发展。

2022-10-12 13:38:32 612

原创 如何在金融行业里释放数据分析团队的生产力

Coovally Tabular大数据分析平台以低代码的建模操作降低了AI分析的门槛,让更多的业务人员能够通过简单的建模方式,自主解决日常业务数据分析需求,在业务一线即可实现对数据的深刻洞察挖掘。有了Coovally Tabular大数据分析平台,银行内部的所有数据分析开发工作都可在同一平台内进行,不仅进度一目了然,还可以实现共享成果管理、建模应用等,让数据开发中产生的知识资产实现沉淀复用。并且可以与银行原有大数据指标系统的无缝整合,同时借助Coovally Tabular简便的自助式操作,让更多的业务

2022-10-10 14:23:15 33

原创 如何利用大数据智能分析平台助力科研工作

近年来随着国家产业数字化转型步伐的加快,大数据及人工智能技术已经深入到各个行业领域之中,在产研联动创新融合的大趋势下,很多专业科研机构也应势开始重视将行业研究与机器学习相结合,借助数据建模为实际行业科研工作带来助力。

2022-09-28 09:40:39 442

原创 如何利用大数据处理平台对金融风控分析

随着金融行业风险管理力度的加强,金融市场的格局也正在显著变化,近几年随着技术演进与融合应用,监管提出更加高质量合规风控要求的同时,也加快相关技术的不断升级。无论是从银行、证券、保险等不同细分领域来看,还是从支付、风控、客服等不同业务环节而言,大数据相关技术对于金融业务的变革影响都在不断加深。借力人工智能与大数据分析的力量,让日常工作智能化,轻量化,便捷化,来缓解一线业务人员的大量重复劳动,提高整体工作效率和准确度,已经成为了金融行业技术创新的新趋势。

2022-09-22 10:00:54 42

原创 九宫格红绿灯到底是不是新规?交通信号灯到底该如何识别?

跑码地Coovally是解决智慧交通问题的好帮手,可以通过整合加工多源数据,实时识别道路图像,实现道路缺陷检测、井盖识别以及地面积水识别,减少此类因素带来的危险;不仅如此,跑码地Coovally还可以根据道路部门的固有工作流程进行模块化定制,让软件更加贴身地符合使用者的需求。在交通新时代,让道路更具智慧!

2022-08-25 15:27:26 226

原创 Coovally标准版本: 16万元帮助企业轻松搞定100+ AI应用场景!

在AI深度赋能各个产业细分场景的浪潮下,企业落地面临的主要困难是什么?场景多、人才贵、周期长、风险高。俗话也说:磨刀不误砍柴工,好的工具让工作效率成倍提升。因此,在这样的大背景下,企业需要一款轻量级的工具来加速AI应用落地。...

2022-08-18 09:39:21 56 1

原创 【Coovally】强大工具:一键转换voc、coco、yolo、csv等格式的数据集

一款以数据为中心的机器视觉AI自动开发平台——Coovally,它提供了图像预处理工具链,能够快速有效地完成对图像数据的预处理、增强、标签转换等工作,解决了我近期遇到的一些格式转换问题。...

2022-07-20 16:11:02 276 1

原创 企业如何低成本实现AI算法自由|快速转型

目前,很多企业,尤其是有大量数据却不知道怎么用的制造企业还处在数字化转型的前期或者正在准备向数字化转型的路上。有没有解决方案?有。

2022-06-16 10:08:11 47

原创 Roboflow与CooVally|基于RetinaNet算法的数据集训练哪家强?

海洋占领全球面积的71%,随着“海洋强国”战略的实施,也加剧了海岛空间的信息应用。由于海岛的地势地貌比较复杂,常规的人工测量难以完成地理空间采集任务,现有的卫星遥感技术不仅分辨率较低,而且成本高且易受天气影响。但是随着无人机遥感技术的发展与应用,其不仅具有高时效性、低成本的特点,同时还有高自动化的专业处理软件的支持,能够满足海洋地区获取地理空间信息的要求,可以高效率的完成海洋环境监测的重任。那么本次基于RetinaNet算法对海洋上的小目标无人机检测的数据进行训练,使用的是一款线上的平台:Coo

2022-05-07 09:07:03 209

原创 基于CooVally的人造心脏瓣膜缺陷检测【Mask R-CNN】

近日,苏州心锐医疗科技有限公司完成超千万元人民币天使轮融资,由北极光创投独家投资,为加速高分子瓣膜的临床转化、普及和推广。心脏瓣膜病是我国常见的一种结构性心脏病。根据Frost Sullivan数据,2018年全球约有2.09亿患者患有心脏瓣膜疾病,每年造成约260万人死亡,中国心脏瓣膜病的发病率为2.5%~3.2%,2018年患者超过2700万人,其中超过75岁的老年人发病率高达13.3%,且随着人口老龄化趋势的增加,瓣膜疾病的发病率逐年上升。对于严重的瓣膜性心脏病患者,更换人工心脏瓣膜是最为有效

2022-04-25 09:34:49 104

原创 机器学习|CooVally — 拒绝模型训练外包

机器学习(ML)算法正越来越多地被用于不同领域,对个人、组织、社会和整个地球都有重大影响的决策。由于当前的 ML 算法需要大量的数据和计算能力。因此,很多个人和组织会把机器学习建模任务外包给外部供应商,包括亚马逊 Sagemaker、微软 Azure 等 MLaaS 平台以及其他小公司。但这种做法真的安全吗?来自 UC Berkeley、MIT 和 IAS 的一项研究表明,你外包出去的模型很有可能会被植入后门,而且这种后门很难被检测到。如果你是一家银行,对方可能会通过这个后门操纵你给何人贷款。所

2022-04-22 11:27:08 1027

原创 基于Mask R-CNN的锯齿实例分割方法

基于Mask R-CNN的锯齿实例分割方法首先来说一说实例分割,实例分割中的分割是指根据灰度、彩色、空间纹理、几何形状等特征,把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。实例分割方法的发展历程:今天分享的主要是基于Mask R-CNN算法的锯齿实例分割方法,这里使用到的平台是CooVally,一款可以帮助用户快速筛选可用AI模型的平台,在此次训练中,最好的mPA为0.819。下图是此次训练的数据样本集:关于锯齿实

2022-04-20 16:43:43 3019

原创 YOLOX手把手实操:火星/月球陨石坑的数量统计

探索太空一直是人类乐此不疲的活动,随着科技的发展,人们对月球和火星愈发好奇。而在各种太空探索任务中,有效探测陨石坑具有至关重要的意义。陨石坑是行星、卫星、小行星或其它天体表面通过陨石撞击而形成的环形凹坑。随着陨石颗粒大小撞击到火星/月球表面时,会撞击出不同大小的陨石坑宽度。目前,关于陨石坑相关的数据集比较少,此次,运用了CooVally平台对火星/月球陨石坑的数量统计进行一次实验训练,最终mPA达到了0.757。下图是我们此次实验采用的数据样本集:接下来来看一看标签的详情,各个大小不同的

2022-04-12 16:29:34 377

原创 基于CooVally的多晶硅太阳能板缺陷检测

随着全球气候变化对人类社会构成重大威胁,越来越多的国家将“碳中和”上升为国家战略 ,提出了无碳未来的愿景。2020年,我国基于推动实现可持续发展的内在要求和构建人类命运共同体的责任担当,宣布了碳达峰和碳中和的目标愿景。关于可持续发展,第一想到的便是太阳能,它是一种可再生能源,人们利用太阳能进行发电是目前运用最为广泛的一种方式。而太阳能电池板是太阳能发电系统中的核心部分,由太阳光照射后,把光的能量转换成电能。其中,多晶硅太阳能电池兼具单晶硅电池的高转换效率和长寿命,以及材料制备工艺相对简化等优点。

2022-04-07 17:34:19 396

原创 用CooVally快速实现多类型车辆检测

如今,交通已经成为影响人们生活的重要因素之一。随着视频监控设备的发展,以及计算机图像处理技术,计算机视觉技术的不断提高,基于视觉的智能交通监控系统已经成为现代智能交通领域中的一项重要组成部分。本文主要介绍了如何利用 CooVally快速实现多类型车辆检测。CooVally限时特惠|花最少的时间,投最少的资金,开发最实用的AI系统在开始之前,先说一下图像采集方法吧!图像采集方式分为静态与动态两种:静态采集依靠地感线圈、红外或雷达等装置,当有车辆通过时这些装置时相机会接到一个触发信号,从而立刻抓

2022-04-01 09:40:10 105

原创 开“猿”节流,花式裁员,程序员如何做副业?

近期,互联网行业裁员话题一直高居热搜不下,还有的大厂将此次裁员称为“毕业”,将离职指引文件改为“毕业须知”,并祝福员工毕业快乐。短期内的各大厂的大量裁员刷屏各个网站,也孕育出一个新的网络词汇“开猿节流”。说到这里,有个很大的疑问就产生了。那些被裁的员工该何去何从?很多程序员在还未毕业时便在大厂开始实习,而能够转正留下来是值得高兴的一件事。但是,身在互联网行业,你永远也不知道自己会被谁击败,会在哪一个时刻被抛弃。如果没有此次的大裁员事件,很多程序员也会在35周岁后面临一个分水岭,来到一个“

2022-03-31 09:19:47 645

原创 一个半小时完成一个目标检测任务——基于CooVally的热轧钢带表面缺陷检测

目前,中国正在大力发展新型工业,推动工业信息化、智能化建设。在钢铁制造的工艺流程,对于生产的钢带也提出了较高的质量管控需求,因此,对钢板表面进行缺陷检测是一项重要的任务。通常,钢带表面缺陷主要以水印、裂口、边部硌印为主。当前工厂现有的检测方式多为人工检测,一般的目视检测,常会造成一些如:检测精度差、人工效率低等问题;而且对人体健康也有一定的损害。所以综合以上,决定尝试使用CooVally对东北大学热轧钢带数据集中的6类表面缺陷进行检测(目标检测任务),初次训练mAP便达到了0.7094。首先介绍

2022-03-30 09:18:00 4068

原创 基于CooVally的PCB板缺陷检测

PCB(printed circuit board)是电子元器件的支撑体,也是电子元器件电气相互连接的载体,其技术水平的高低决定了一个国家电子信息产业的配套水平。自半导体晶体管于20世纪50年代出现以来,对PCB的需求量急剧上升。特别是集成电路的迅速发展及广泛应用,使电子设备的体积越来越小,电路布线密度和难度越来越大,这就要求PCB要不断更新。作为国家战略性新兴产业发展重点之一的电子信息产业,PCB行业的势头正逐渐高涨。但是,随着PCB朝着高精度、多层数、微型化方向发展,传统的人工检测和电子检测

2022-03-25 16:42:19 1479

原创 目标检测的算法有哪些?该如何入门?

目标检测是计算机视觉领域中的一个重要研究方向,也是其他复杂视觉任务的基础。 作为图像理 解和计算机视觉的基石,目标检测是解决分割、场景理解、目标跟踪、图像描述和事件检测等更高层次 视觉任务的基础。

2022-03-25 09:15:40 3787

原创 5分钟上手,快速筛查可用AI模型

你还在使用传统的方法进行AI建模?传统建模工程的人工工作量巨大,需要算法工程师进行特征分析、模型选择、调参、模型评估等步骤,往往需要数月的时间。这些步骤固然重要,但繁琐耗时,极大地消耗了AI人才的精力。有时候,还会出现拿到数据不知道用哪个AI模型来建模的情况,然后筛选ML/DL模型时费时、费力。CooVally帮助您快速筛查可用AI模型,从而减少AI系统研发时间。跑码地 | CooVally | 人人都是AI工程师​coovally.sinoaus.net/Register不仅支持目标检测、

2022-03-21 16:12:02 1306 2

原创 CooVally — 快速筛选可用AI模型

CooVally旨在帮助用户在获得数据后快速筛选出高性能表现的AI模型,从而减少AI系统研发时间; CooVally提供数据预处理、智能标注、分布式训练、多维度模型评估、一键式云端或边缘设备模型部署。CooVally不仅拥有高效率的处理工具、安全可靠的数据隐私保护、轻巧灵活的本地部署、开放共赢的AI公共技术服务平台。还内置了丰富的模型类型与应用场景,如图像分类、文字识别、表格预测,目标检测等等。花最少的时间,投最少的资金,开发最实用的AI系统,开拓“人人都可以开发AI应用”的新产业格局

2022-03-17 17:54:47 746

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除