自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 收藏
  • 关注

原创 YOLO11性能飞跃的背后:从C3k2到C2PSA,技术细节全解析!

传统SPP模块需要并行计算多个池化层,而SPPF通过重复使用中间计算结果,将计算复杂度从O(∑kCHWk2)O(∑kCHWk2)降低至O(CHW⋅max⁡(k)2)O(CHW⋅max(k)2),其中kk为池化核尺寸。支持通过c3k参数选择使用C3k(可变卷积核)或标准Bottleneck,并通过n控制模块重复次数,g控制分组卷积,e调节通道扩展率,实现计算效率与性能的平衡。在骨干网络中,初始卷积层的步幅(stride=2)和核尺寸(如3×3)优化了特征图的下采样效率,减少信息丢失。

2025-02-13 09:34:45 395

原创 基于YOLO11的术中超声实时脑肿瘤检测:从模型训练到手术室部署

目录引言一、论文信息二、摘要三、数据集研究人群真实标签分割四、YOLO11架构YOLO11增强五、Coovally AI模型训练与应用平台六、评估指标和实验环境模型性能评估指标计算效率指标实验环境七、实验结果目标检测任务实例分割任务手术室模型实施八、讨论未来方向九、结论​​​​​​​引言胶质瘤是原发性脑肿瘤中最常见的一种,其浸润性特征通常会导致预后不良和重大的治疗挑战。根据世界卫生组织(WHO)对中枢神经系统肿瘤的最

2025-02-11 15:26:14 631

原创 Vision Transformer:打破CNN垄断,全局注意力机制重塑计算机视觉范式

相比于传统的CNN,ViT通过自注意力机制实现了全局建模,能够捕捉更复杂的图像特征,尤其在大规模数据集上的表现非常优异。总体而言,虽然ViT的Transformer架构是视觉处理任务的一个有前途的选择,但在ImageNet等中型数据集上从头开始训练时,ViT的性能仍然不如类似规模的CNN替代方案(例如ResNet)。ViT的设计灵感来源于Transformer架构,最初Transformer的提出是为了处理NLP任务的序列数据(如文本),它通过自注意力捕捉机制来捕捉图像中各部分之间的全局依赖。

2025-02-11 09:05:29 994

原创 LLaVA-Mini模型深度解析:轻量级视觉识别的突破与性能对比

在本文中,我们介绍了LLaVA-Mini,一种使用最少视觉token的高效LMM。为了在保留视觉信息的同时实现较高的视觉token压缩率,我们首先分析了LMM如何理解视觉token,发现大多数视觉tokens只在LLM 骨干的早期层中发挥关键作用,在这些层中,它们主要将视觉信息融合为文本标记。为了在压缩过程中保留视觉信息,基于先前的研究发现,视觉token在早期层中对于融合视觉信息至关重要,LLaVA-Mini在LLM底座之前引入了模态预融合模块,将视觉信息融入文本token 中,从而确保视觉理解能力。

2025-02-08 17:22:43 817

原创 YOLO11改进 | 北理工团队在小目标检测领域新创新!NECK层改进,即插即用特征融合模块!

特别是,取代了RetinaNet中的FPN检测精度(AP)提高了3.1%,而模型的计算负荷减少了17.7%,使用GFL作为基本检测器,达到了30.1mAP。GFF增强了特征之间的相关性,加强了小物体在不同特征之间的依赖性,从而可以感知更多的语义信息。通过MFF-GN,得到了具有较强特征相关性和丰富空间信息的特征,可以充分利用相邻层的语义信息,提取不同通道的相关特征,从而增强整体特征表示。通过关注空间上下文信息和层间特征之间的相关性,该策略增强了特征之间的语义表征,从而提高了多尺度特征的学习能力。

2025-02-07 16:52:38 863

原创 【数据增强实战】对比度增强算法:手撕算法vs零代码工具——效率翻倍的秘诀全公开!(附源码)

图像的对比度增强算法在很多场合都有着重要的应用,特别是在医学图像上,这是因为在众多疾病的诊断中,医学图像的视觉检查是很有必要的。而医学图像由于本身及成像条件的限制,图像的对比度很低。例如,在一个完全黑暗的图像中,所有的像素值都会集中在直方图的最左边,而在一个全白的图像中,直方图则会向最右边倾斜。本文介绍了几种常见的对比度增强算法,包括直方图均衡化、自适应直方图均衡化、CLAHE、伽马校正、对比度拉伸和局部对比度增强通过这些算法,可以根据不同的应用场景选择合适的对比度增强方法,以达到最佳的图像处理效果。

2025-02-07 09:46:46 581

原创 YOLO11目标检测:从代码实现到Coovally平台无代码快速部署

这里需要注意结构配置文件,虽然文件名是yolo11.yaml,但是需要再后面指定模型尺寸(n, s, m, l, x),比如需要m规模的模型,在加载模型时用YOLO("yolo11m.yaml");如果不指定,默认是n的。无论是最新的YOLO11还是YOLO系列其他模型算法,Coovally平台通通可以满足的你的训练需求,而且模型训练对比、实验结果等参数直观对比,满足你的课题研究和商业应用。进入数据集详情页,输入任务名称,选择模型配置模版,设置实验E-poch次数,训练次数等信息,即可开始训练。

2025-01-26 16:40:02 1101

原创 YOLO算法改进 | YOLO11改进揭秘,前沿论文精华预览

我们研究了模型的架构创新,包括引入 C3k2(核大小为 2 的交叉阶段部分)块、SPPF(空间金字塔池化--快速)和 C2PSA(具有并行空间注意力的卷积块)等组件,这些组件有助于从多个方面提高模型的性能,如增强特征提取。YOLO11m 在准确性和效率之间取得了显著的平衡,在交通标志、非洲野生动物和船舶数据集上的 mAP50-95 分数分别为 0.795、0.81 和 0.325,而平均推理时间为 2.4ms,模型大小为 38.8Mb,平均 GFLOPs 约为 67.6。

2025-01-24 15:54:10 829

原创 YOLO11改进 | DGNN-YOLO:基于YOLO11的动态图神经网络用于小目标检测及跟踪

目录论文信息摘要引言小目标检测GNN 在目标跟踪中的应用方法输入视频和目标检测动态图构建节点和边特征时空交互损失函数实时处理和感兴趣区域框架概述DGNN-YOLO工作流程集成的优势基于YOLO11的检测机制基于DGNN的跟踪技术损失函数实验结果数据集信息比较实验验证分析精度-召回分析消融实验结论Coovally AI模型训练与应用平台 数据集下载 在Coovally AI Hub公众号后台回复「数据集」,即可获取下载链接!检测和跟踪城市交通中的行人、自行车和摩托车等小物体对交通监控系统构成了重大挑战,因为它

2025-01-24 09:03:59 627

原创 MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!

同时,采用了hybrid-channel策略构建了更高效的解耦检测头,将中间 3×3的ConvModule减少为1个,在维持精度的同时进一步减少了模型耗费,降低了推理延时。对于任何一个输出层,抛弃了常用的基于Max IoU匹配的规则,而是直接采用shape规则匹配,也就是该GT Bbox和当前层的Anchor计算宽高比,如果宽高比例大于设定阈值,则说明该GT Bbox和Anchor匹配度不够,将该GT Bbox暂时丢掉,在该层预测中该GT Bbox对应的网格内的预测位置认为是负样本。

2025-01-22 16:15:47 1083

原创 MMDetection学习系列(5)——Mask R-CNN深度探索与实战指南

与传统的目标检测不同,Mask R-CNN在最后的全连接层之后增加了一个额外的卷积层,用来为每个检测到的物体生成一个像素级的掩码。与传统的目标检测任务不同,目标检测只需要框定物体的位置并分类,而实例分割要求对图像中每个物体的轮廓进行精准的分割,即每个物体的像素都要被标识出来,甚至可以区分出同一类物体的不同实例。为了更好地理解Mask R-CNN网络架构,最好从R-CNN来理解,Mask R-CNN 的架构与Faster R-CNN非常接近,可以通过以下的简单介绍以及架构图详细了解一下它们之间的关联性。

2025-01-22 09:04:58 1018

原创 MMDetection学习系列(4)——Cascade R-CNN深度探索与实战指南

而在图c中,detector(u=0.5)在低IoU水平下比detector(u=0.6)表现优异,而在高IoU水平下则反之,而当u=0.7时,由于正样本的不足以及推理时输入的样本IoU较低,detector(u=0.7)的整体表现都降低了。直观上训练时设置IoU越大,检测的bbox越少,但是普遍质量更好,也就是说 IoU如果设置的比较小,那么在训练过程中可能会带来很多噪声,不利于训练,但是如果IoU太高,会导致正样本太少出现过拟合,结合如下曲线可以进一步验证。

2025-01-17 17:06:28 958

原创 MMDetection学习系列(3)——RetinaNet深度探索与实战指南

焦点损失通过减少易分类样本的权重,将更多的关注集中在那些难以分类的样本上,从而有效缓解了这一问题。为了解决这个问题,在模型初始化时,针对前景(正样本) 的预测值设置了先验值(prior) 的概念,以π 表示(设定π=0.01),如此一来使得模型前景样本的预测几率比较低,模型倾向预测为背景,大幅降低负样本的loss。图c也是由单一维度的图像作为模型输入,但在每一层都生成不同尺度的特征,采用多尺度特征融合的方式,最后再将其concat起来,这种方式不会增加额外的计算量,使用此方法的为SSD。

2025-01-16 16:47:46 766

原创 目标检测新视野 | YOLO、SSD与Faster R-CNN三大目标检测模型深度对比分析

根据具体的应用需求选择合适的算法,可以更好地发挥目标检测技术的价值。Faster R-CNN因其较高的检测精度和可靠性,适用于对精度要求较高的场景,如医学图像分析(如肿瘤检测)、工业质检(如缺陷检测)等。和YOLO类似,也是一种单阶段检测器,与YOLO不同的是,SSD通过使用不同尺度的特征图来检测不同尺寸的物体,从而提升了对多尺度目标的检测能力。然而,由于采用两阶段的处理方式,它的速度较慢,适合精度要求较高但不特别看重实时性的场景。其中,表示边界框中心的欧几里得距离,是包围框对角线的长度,是长宽比的差异。

2025-01-16 09:56:34 1007

原创 MMDetection学习系列(2)——SSD深度探索与实战指南

论文中提出了一种使用单一深度神经网络检测图像中物体的方法。我们的方法被命名为SSD,它将边界框的输出空间离散化为一组默认框,每个特征图位置的长宽比和比例各不相同。在预测时,该网络会对每个默认框中存在的每个物体类别进行评分,并对框进行调整,以更好地匹配物体形状。此外,该网络还结合了来自不同分辨率的多个特征图的预测结果,从而自然地处理各种尺寸的物体。相对于需要物体提案的方法,SSD非常简单,因为它完全省去了提案生成和后续的像素或特征重采样阶段,并将所有计算封装在一个网络中。

2025-01-14 14:02:47 760

原创 MMDetection学习系列(1)——Faster RCNN深度探索与实战指南

自R-CNN以及Fast R-CNN的出现之后,Fast R-CNN仍然有许多缺点,即选择性搜索找出所有的候选框这个也非常耗时,因此性能存在瓶颈,为了解决这个问题,Faster R-CNN就出现了。下图给出的是使用VGG16模型的Faster R-CNN网络结构图,即Faster R-CNN中的conv layers使用的是VGG16的conv layers。总的来说,架构由RPN和Fast-R-CNN构成,RPN生成候选区域,Fast-R-CNN使用RPN生成的候选区域进行分类和回归。

2025-01-14 10:35:44 764

原创 船舶分类与目标检测数据集

在当今时代,智慧港口的理念正逐步成为海事行业发展的新趋势。在智慧港口的构建中,船舶分类与识别技术扮演着至关重要的角色,它不仅能够优化船舶管理,还能显著降低安全事故的发生率。如果您正在寻找特定的数据集以支持您的研究或项目实践,欢迎在评论区留言,或通过公众号私信告知我们您所需的数据集类型和主题。自动化监控:利用数据集训练的模型可以对港口船舶进行实时监控,自动识别船舶种类及其作业状态,提升港口调度效率。操作优化:通过对船舶动作的精准识别,可以优化港口装卸流程,减少等待时间,提高整体运行效率。

2025-01-10 17:19:18 235

原创 MMDetection框架下的常见目标检测与分割模型综述与实践指南

MMDetection计算机视觉系列模型在目标检测领域不断刷新纪录,从精度到效率均取得了显著成就,推动了多个领域的AI发展。值得一提的是,Coovally模型训练平台涵盖了国内外开源社区。

2025-01-10 16:19:33 1315

原创 RT-DETR全解析:超越 YOLO,实时物体检测更快更精准(附代码)

RT-DETR为实时物体检测任务提供了一个新的解决方案,一个模型的优秀不仅仅只看它的速度和精度,它出彩的设计理念让它真正被人们记住,至于算不算“YOLO终结者”,我认为看完整篇文章,你应该有自己的看法了,欢迎在评论区讨论交流哦!为了弥补这一缺点,RT-DETR进行了优化,使得其不仅继承了Transformer的优势,还能够在保持较高精度的同时,大大提高了推理速度。在传统的DETR中,解码器通常需要大量的计算来匹配物体和查询,但RT-DETR在此基础上进行了改进,通过更高效的解码机制加速了计算过程。

2025-01-09 15:39:44 1089

原创 突破边界:探索Grounding-DINO,重新定义视觉与语言的交汇

在这篇论文中,介绍了一个名为Grounding-DINO的模型。Grounding-DINO扩展了DINO模型,使其能够进行开放集对象检测,即能够根据文本查询检测任意对象。我们对开放集对象检测器的架构进行了回顾,并提出了一个紧密融合的方法,以更好地融合跨模态信息。我们还提出了一个子句级表示的方法,以更加合理地使用检测数据作为文本提示。此外,Grounding-DINO还被用于增强细粒度图像编辑能力,通过与GLIGEN结合使用,利用输入短语中的短语提示来生成图像中的特定位置的对象。

2025-01-09 09:21:29 906

原创 YOLO11改进算法 | 引入SimAM模块的YOLO11-pose关键点姿态估计

数据集大小300张:训练集236张,验证集64张,关键点共21个。

2025-01-07 09:30:08 1103 2

原创 YOLO新成员 | CRAS-YOLO:基于 YOLOv5s 算法的多类别船舶检测与分类模型

实验结果证实,与最初的YOLOv5s及其他模型相比,所提出的CRAS-YOLO在SAR船舶检测方面表现更好,检测精度平均提高了3.6%,召回率提高了1.8%,mAP(0.5)提高了0.5%,mAP(0.5-0.95)提高了1.0%。可以看出,与原始YOLOv5s(基线)模型相比,CRAS-YOLO模型的精确度(P)提高了2.7%,召回率(R)提高了2.6%,mAP(0.5)值提高了1.5%,mAP(0.5-0.95)提高了0.6%,改进后的CRAS-YOLO的性能优于原始YOLOv5s算法。

2025-01-03 15:19:42 841

原创 机场安全项目|基于改进 YOLOv8 的机场飞鸟实时目标检测方法

目录论文信息背景摘要YOLOv8模型结构模型改进FFC3 模块CSPPF 模块数据集增强策略Coovall AI模型训练与应用平台实验结果消融实验对比实验结论论文信息《科学技术与工程》2024年第24卷第32期刊载了中国民用航空飞行学院空中交通管理学院孔建国, 张向伟, 赵志伟, 梁海军的论文——“基于改进 YOLOv8 的机场飞鸟实时目标检测方法”。题目:基于改进YOLOv8的机场飞鸟实时目标检测方法作者:孔建国、张向伟、赵志伟

2025-01-02 17:04:44 1131

原创 智慧矿区分享|面向边缘计算的改进YOLOv8矿区障碍检测模型研究

此外,轻量型颈部和检测头的设计,使得模型大小从6.6MB降至3.6MB,GFLOPs也从7.6降至 3.6,进而导致Method 3的精度最低,表明新的特征融合方法和检测头的引入,以少量的精度下降换取大量的模型体积和参数量的减少,随着 Method 4中Inner-CIoU的引入,使得精度有所回升,最终实现了精度与速度的良好平衡。为进一步提升算法对小目标障碍物的检测性能,本文在原始模型中仅将P3、P4、P5层的特征提取输出送入融合网络的基础上,加入了P2层的输出结果,并按照图6所示的特征融合方式进行融合。

2025-01-02 10:51:28 1319

原创 清华发布Hyper-YOLO:超图计算+目标检测!捕捉高阶视觉关联

超图的高阶关联建模能力使得HyperC2Net能够在跨层次和跨位置的信息传播中表现出色,不仅在特征点之间实现高效的信息聚合和分发,还通过跨层次的消息传递显著提升了目标检测性能,尤其在处理复杂场景和多目标检测任务中表现优异。超图能够表达跨层次和跨位置的复杂关系,而非简单的相邻层信息融合。颈部网络(Neck)采用基于超图的跨层次和跨位置表示网络(HyperC2Net),通过超图计算集成多尺度特征,实现高阶信息的跨层次和跨位置传播,从而生成适用于目标检测的语义特征,显著提升模型的检测性能。

2024-12-31 14:53:09 2123 2

原创 【YOLO算法改进】ALSS-YOLO:无人机热红外图像|野生动物小目标检测

目录论文信息论文创新点1.自适应轻量通道分割和洗牌(ALSS)模块2.轻量坐标注意力(LCA)模块3.单通道聚焦模块4.FineSIOU损失函数摘要架构设计轻量高效网络架构 - ALSS模块 LCA模块单通道聚焦模块损失函数优化 - FineSIOU实验与分析消融实验对比实验 Coovally AI模型训练与应用平台 作者提出了一个新颖的ALSS模块,该模块采用自适应通道分割策略来优化特征提取,并集成了通道洗牌机制以增强通道间信息交换。这一改进提高了对模糊目标的检测准确性,尤其是在处理由抖动引起的模糊和重叠

2024-12-31 09:22:07 1161

原创 【智慧交通案例分享】南方高铁激光雷达路端轨道异物侵限智能监测系统

首先,人工巡检需要大量的人力和时间投入,效率低下且容易出现疏漏。本方案设计核心基于激光雷达可快速、准确、大量的获取防护区域里出现的异物的位置点云数据,通过对点云数据进行预处理、匹配视觉传感器,即时精准抓取障碍物的体积和位置信息,并将险情及时通过终端显示软件、报警器等,为驾驶员及时提通报预警信号,从而有效规避事故发生。(1)激光雷达:为系统核心传感器,激光雷达能实时扫描探测铁轨安全监测区域内障碍物,实时输出环境的高精度三维点云数据,最远测距可达200m,100m范围内可探测出20*20*20cm的物体。

2024-12-27 16:03:15 965

原创 TrackZone:使用Ultralytics YOLO11在区域内进行对象跟踪

在当今这个智能化、自动化不断发展的时代,视频监控、自动驾驶、运动分析等领域对实时目标追踪的需求越来越高。我们都知道,传统的监控系统可以识别和记录发生了什么,但它们缺乏实时追踪的能力,特别是在复杂的环境中,比如一个繁忙的街头,或者多个运动员在比赛中的轨迹。这里,TrackZone 就显得非常重要了。TrackZone 是它基于 Ultralytics YOLO11的基础上,它专门在视频和实时摄像机馈送的区域内集成了物体检测和跟踪功能。

2024-12-26 15:30:08 1216

原创 【智慧农业案例分享】南京农业大学汪小旵教授等:基于改进YOLOv8的草莓识别与果梗采摘关键点检测

农业工程学报》2024年第40卷第18期刊载了南京农业大学等单位杨震宇、汪小旵、祁子涵与王得志的论文——“基于改进YOLOv8的草莓识别与果梗采摘关键点检测”。该研究由江苏省农业科技自主创新资金(项目号:CX(21)2006)资助。

2024-12-26 15:29:18 1134

原创 YOLO11全解析:从原理到实战,全流程体验下一代目标检测

YOLO11作为这YOLO系列的最新力作,无疑将目标检测算法推向了一个新的高度。YOLO11在2024年9月30日的YOLOVision活动中正式发布了,这一新版本不仅在性能上有了显著提升,还在功能多样性上迈出了重要一步。YOLO11是由Ultralytics团队于2024年9月30日发布的,它是YOLO(You Only Look Once)系列中的最新成员。YOLO11在之前版本的YOLO基础上引入了新功能和改进,以进一步提高性能和灵活性。

2024-12-25 16:00:58 4051 4

原创 YOLOv10:全新实时端到端目标检测器,性能与效率再升级

在目标检测的激烈竞赛中,YOLO系列始终占据一席之地。今年新发布的YOLOv10,设计团队为了提高效率和准确性,通过对各个组件的全面检查来实现模型架构,最终通过新办法实现了一系列不同模型规模的实时端到端检测器的新家族,即YOLOv10-N / S / M / B / L / X。YOLOv10-N:用于资源极其有限环境的纳米版本。YOLOv10-S:兼顾速度和精度的小型版本。YOLOv10-M:通用中型版本。YOLOv10-B:平衡型,宽度增加,精度更高。YOLOv10-L。

2024-12-25 10:43:37 1048

原创 YOLOv8全解析:高效、精准的目标检测新时代——创新架构与性能提升

YOLO(You Only Look Once)系列模型,凭借其高效、快速的特性,已经成为目标检测领域的重要代表。作为YOLO系列中的最热门版本,YOLOv8继续沿袭了其前辈的优势,并进一步提升了性能,使得它在处理复杂场景中的目标检测任务时更加高效和精准。

2024-12-20 10:56:08 2238 2

原创 深入解析YOLOv7,从原理到操作:体验精度、速度与多任务检测的完美平衡

YOLO(You Only Look Once)作为一种高效、实时的目标检测算法,一直是计算机视觉领域中最受欢迎的技术之一。YOLOv7是YOLO系列中一款高效、精准且灵活的目标检测模型。目标检测任务中提供了更高的准确度、更强的实时性和更丰富的功能,是目标检测领域的强力工具。今天就跟着小编一起来全方面认识一下YOLOv7算法模型吧~

2024-12-18 11:08:25 1060

原创 深度学习实战指南:手把手教你掌握YOLOv6算法模型训练全流程与优化技巧

YOLOv6是由美团视觉智能部研发的一款目标检测框架,专注于工业应用。相较于YOLOv4和YOLOv5,YOLOv6在网络结构方面进行了深入优化,提升了模型的检测精度,并在处理复杂场景时更加稳健。同时,YOLOv6还在保持高效性的基础上,减少了模型的参数量,适合在移动端等计算资源有限的设备上运行。论文:总结而言,YOLOv6是一个专为工业应用设计的单阶段目标检测框架,通过优化标签分配策略、损失函数和引入行业友好的改进,实现了高效和准确的目标检测。

2024-12-18 11:07:49 801

原创 从YOLOv5到训练实战:易用性和扩展性的加强

目标检测领域一直以来都在速度与精度之间寻找平衡,YOLO系列模型凭借其端到端的高效设计成为了工业界和学术界的明星算法。其中,YOLOv5以其轻量化设计、优秀的性能和实现层面的便捷性,迅速成为最流行的单阶段目标检测工具之一。在这篇文章中,我们将深入解读YOLOv5的网络结构、性能优势以及实用功能,并展示如何YOLOv5基于CoovallyCPU版本模型训练到预测的全流程。YOLOv5是YOLO系列的第五个版本,由 Ultralytics 开发,但并未在官方论文中发布。

2024-12-13 15:08:17 1066

原创 高效无代码实战:揭秘YOLOv3算法模型训练的详细步骤与技巧

在目标检测领域,YOLO系列算法以其高效的端到端设计和卓越的实时性能,始终占据着重要地位。其中,YOLOv3作为该系列的第三代,凭借Darknet-53骨干网络、多尺度检测机制以及对分类方法的优化,不仅实现了精度与速度的平衡,还为目标检测技术的实际应用提供了新的可能性。在这篇文章中,我们将详细解读YOLOv3的模型结构与性能表现,探索其在Coovally CPU平台上的使用方法,从模型训练到实际预测,全程无代码,让复杂的AI技术触手可及。YOLOv3是YOLO系列算法的第三代,于2018年发布。

2024-12-13 14:34:25 839

原创 Coovally CPU版:用AI模型微调技术革新数据标注方式

数据标注一直是AI项目开发中最耗时的环节。特别是目标检测和图像分割等任务中,大量的图片或视频帧标注工作不仅需要消耗大量的人力,更容易因类别定义不明确或数据分布不均而降低效率。为此,我们推出了Coovally CPU版,支持运行在普通X86架构的笔记本或PC上,无需昂贵的GPU设备即可完成高效标注。而其核心优势,便是通过微调模型,让标注效率和精准度实现飞跃!

2024-12-05 18:01:26 702

原创 YOLO系列发展历程:从YOLOv1到YOLO11,目标检测技术的革新与突破

*YOLO(You Only Look Once)**系列模型无疑是目标检测领域的一座里程碑,自2016年首次提出以来,便在目标检测领域掀起了一场革命。从YOLOv1的开创性提出,到YOLO11的不断迭代升级,该系列模型持续突破自我,引领着目标检测技术的发展潮流。总结而言,YOLO系列模型在目标检测领域不断刷新纪录,从精度到效率均取得了显著成就。尽管每一代模型都有其局限性,但它们的创新推动了整个领域的发展。

2024-12-05 16:27:15 2564 2

原创 YOLOv11来了,使用YOLOv11训练自己的数据集和预测 (保姆级无代码操作版)

无代码版操作使用YOLO11,你敢相信?

2024-11-22 17:14:03 1659

原创 【AI竞赛盛宴】十月&十一月赛事盘点,精彩不容错过!

一场又一场智慧与技术的较量接连上演,这不仅是一次提升专业素养和设计能力的绝佳机会,更是通往丰厚奖励的桥梁。参赛选手自由集成任何第三方开源或闭源模型进行比赛,利用Coovally的模型训练功能开展模型的训练,并由此来提交训练结果至打分系统。采用调用模型接口的形式进行比赛,大赛组委会针对此类赛题搭建比赛平台,比赛平台自动挂载数据,自动执行模型,在离线环境中进行比赛。使用官方提供的绘画工具,紧扣【天山绮梦·西域之歌】的主题进行创作。【“天翼云息壤杯”高校AI大赛】【AI大师赛图像处理与应用】

2024-10-15 17:20:14 308

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除