贪心算法——NY 14 会场安排问题

会场安排问题

时间限制:3000 ms  | 内存限制:65535 KB

难度:4

描述

学校的小礼堂每天都会有许多活动,有时间这些活动的计划时间会发生冲突,需要选择出一些活动进行举办。小刘的工作就是安排学校小礼堂的活动,每个时间最多安排一个活动。现在小刘有一些活动计划的时间表,他想尽可能的安排更多的活动,请问他该如何安排。

输入

第一行是一个整型数m(m<100)表示共有m组测试数据。
每组测试数据的第一行是一个整数n(1<n<10000)表示该测试数据共有n个活动。
随后的n行,每行有两个正整数Bi,Ei(0<=Bi,Ei<10000),分别表示第i个活动的起始与结束时间(Bi<=Ei)

输出

对于每一组输入,输出最多能够安排的活动数量。
每组的输出占一行

样例输入

2

2

1 10

10 11

3

1 10

10 11

11 20

样例输出

1

2

提示

注意:如果上一个活动在t时间结束,下一个活动最早应该在t+1时间开始

 

2)    题意

两活动如果时间上有重叠,就会产生冲突,不能同时进行。给出一组活动时间表,求出最多可以安排多少活动。

3)    数据范围

测试数据组数小于100;

一组数据的活动数为n,1<n<10000,枚举不可行;

活动的开始时间为b和结束时间为e,0<=b<=e<=10000。

4)    算法

一个活动的信息有开始时间,持续时间,结束时间。

若优先选择开始时间早的,比如一个活动在0时开始,10000时结束,那么只能进行一个活动,显然不可行。

若优先选择持续时间短的,例如一组数据:

3

1 5

5 6

6 10

先选择的就是第二个活动,第一个和第三个就没法进行,所以也不可行。

若优先选择结束时间早的,这样就可以腾出尽可能多的时间供接下来的活动使用,可行。

所以使用贪心算法,优先选择结束时间早的活动。

5)    代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

#define SIZE 10005

struct Activity_Info
{
	int s;	//开始时间
	int e;	//结束时间
}acts[SIZE];

bool Cmp(const Activity_Info a, const Activity_Info b)
{
	return a.e < b.e;
}

int ArrangingActivities(int n)
{
	//按结束时间从小到大排序
	sort(acts, acts+n, Cmp);

	int count = 0;
	int currTime = -1;	//当前时间
	int i;
	for (i = 0; i < n; i++)
	{
		if (acts[i].s > currTime)
		{
			count++;
			currTime = acts[i].e;
		}
	}
	return count;
}

int main(void)
{
	int ncases;
	scanf("%d", &ncases);
	while (ncases-- != 0)
	{
		int n;
		scanf("%d", &n);

		int i;
		for (i = 0; i < n; i++)
		{
			scanf("%d%d", &acts[i].s, &acts[i].e);
		}

		printf("%d\n", ArrangingActivities(n));
	}
	return 0;
}

6)    测试数据

4

2

1 10

10 11

3

1 10

10 11

11 20

6

1 10

12 16

11 17

10 11

2 3

4 8

3

1 5

5 6

6 10

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

G11176593

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值