【树状数组套主席树】luogu P2617

传送门

 

模板:求动态区间第k大。

先考虑原来静态求k大。原来的做法是在每一个点i上建立一朵值域线段树存储[1,i](下标)的信息。通过前缀和相减求出答案。

然而现在有单点修改。那么如果修改一个点i,它后面的所有树都要修改。。。时间要炸。

这时候想想,其实现在就是要实现单点修改和区间查询。。。树状数组是不是可以解决呢。。

 

回顾一下树状数组,它就是利用二进制快速求前缀和。

那么现在脑补一个树状数组,它的结点放的是一条值域线段树,存储的是它代表的区间的信息。

 

C[1]=A[1],C[2]=A[1]+A[2],C[3]=A[3],C[4]=A[1]+A[2]+A[3]+A[4],C[5]=A[5]。。。。。。

那么对应的C点的值域线段树就存对应的A的信息。

单点修改、区间查询这些操作都和树状数组一样。就是把一个个结点的信息合并起来。

那么一次修改要修改logn个树,一次修改为log m(m为值域),一次修改就变成log²了。

其中单点修改操作相当于是删去一个数a,再加上一个数b。就是把a的出现次数减一,b的出现次数加一。

具体实现的时候把要修改的结点事先求出来。如下:

ansx=0,ansy=0;
for(int j=q[i].b;j;j-=lowbit(j))   qy[++ansy]=root[j];
for(int j=q[i].a-1;j;j-=lowbit(j)) qx[++ansx]=root[j];
print(b[query(1,len,q[i].c)]),putchar(10);

询问的时候先把树状数组的贡献求了,如下:

for(int i=1;i<=ansx;++i) sum-=T[T[qx[i]].lc].siz;
for(int i=1;i<=ansy;++i) sum+=T[T[qy[i]].lc].siz;

由于我们要把修改的值也离散化。。就把操作离线下来做。

#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
#define mid ((l+r)>>1)
using namespace std;
const int maxn=1e5+10;
struct node{int lc,rc,siz;}T[maxn*600];
struct qury{int a,b,c;}q[maxn];
char op[10];
int n,m,ansx,ansy,tot,len;
int root[maxn*600],a[maxn],b[maxn<<1],qx[maxn],qy[maxn];
inline int read(){
	int x=0,f=1;char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
	while(isdigit(ch)) x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
	return x*f;
}
inline void update(int &root,int pre,int l,int r,int val,int num){
	T[root=++tot]=T[pre],T[root].siz+=num;
	if(l==r) return;
	if(val<=mid) update(T[root].lc,T[pre].lc,l,mid,val,num);
	else		 update(T[root].rc,T[pre].rc,mid+1,r,val,num);
}
inline void add(int pos,int v){
	int val=lower_bound(b+1,b+len+1,a[pos])-b;
	for(int i=pos;i<=n;i+=lowbit(i))
		update(root[i],root[i],1,len,val,v);
}
inline int query(int l,int r,int k,int sum=0){
	if(l==r) return l;
	for(int i=1;i<=ansx;++i) sum-=T[T[qx[i]].lc].siz;
	for(int i=1;i<=ansy;++i) sum+=T[T[qy[i]].lc].siz;
	
	if(k<=sum){
		for(int i=1;i<=ansx;++i) qx[i]=T[qx[i]].lc;
		for(int i=1;i<=ansy;++i) qy[i]=T[qy[i]].lc;
		return query(l,mid,k);
	}
	else{
		for(int i=1;i<=ansx;++i) qx[i]=T[qx[i]].rc;
		for(int i=1;i<=ansy;++i) qy[i]=T[qy[i]].rc;
		return query(mid+1,r,k-sum);
	}
}
inline void disc(){
	sort(b+1,b+len+1);
	len=unique(b+1,b+len+1)-b-1;
}
inline void print(int x){
	if(x>9) print(x/10);
	putchar(x%10+'0');
}
int main(){
	n=read(),m=read();
	for(int i=1;i<=n;++i) a[i]=b[++len]=read();
	for(int i=1;i<=m;++i){
		 scanf("%s",op);
	   	 q[i].a=read(),q[i].b=read();
		if(op[0]=='Q') q[i].c=read();
		if(op[0]=='C') q[i].c=0,b[++len]=q[i].b;
	}disc();
	for(int i=1;i<=n;++i) add(i,1);
	for(int i=1;i<=m;++i){
		if(q[i].c){
			ansx=0,ansy=0;
			for(int j=q[i].b;j;j-=lowbit(j))   qy[++ansy]=root[j];
			for(int j=q[i].a-1;j;j-=lowbit(j)) qx[++ansx]=root[j];
			print(b[query(1,len,q[i].c)]),putchar(10);
		}
		else{
			add(q[i].a,-1),a[q[i].a]=q[i].b;
			add(q[i].a,1);
		}
	}
	
}

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 护眼 设计师:闪电赇 返回首页