spoj5971 lcmsum

求 : 求:
∑ i = 1 n l c m ( i , n ) \sum_{i=1}^{n}lcm(i,n) i=1nlcm(i,n)

考虑将 l c m lcm lcm转化为 g c d gcd gcd,原式变成 ∑ i = 1 n i ∗ n g c d ( i , n ) \sum_{i=1}^{n}\frac{i*n}{gcd(i,n)} i=1ngcd(i,n)in

蜜汁变形( i i i n − i n-i ni其实是等价的):
∑ i = 1 n − 1 i ∗ n g c d ( i , n ) + ∑ i = 1 n − 1 ( n − i ) ∗ n g c d ( n − i , n ) 2 + n \frac{\sum_{i=1}^{n-1}\frac{i*n}{gcd(i,n)}+\sum_{i=1}^{n-1}\frac{(n-i)*n}{gcd(n-i,n)}}{2}+n 2i=1n1gcd(i,n)in+i=1n1gcd(ni,n)(ni)n+n

然后发现: g c d ( i , n ) = g c d ( n − i , n ) gcd(i,n)=gcd(n-i,n) gcd(i,n)=gcd(ni,n)

那么只需求:
∑ i = 1 n − 1 n 2 g c d ( i , n ) \sum_{i=1}^{n-1}\frac{n^2}{gcd(i,n)} i=1n1gcd(i,n)n2

枚举 g c d gcd gcd(设枚举的 g c d gcd gcd d d d):
∑ d ∣ n ∑ i = 1 n − 1 n 2 d ∗ ( g c d ( i , n ) = = d ) \sum_{d|n}\sum_{i=1}^{n-1}\frac{n^2}{d}*(gcd(i,n)==d) dni=1n1dn2(gcd(i,n)==d)

n 2 d \frac{n^2}{d} dn2提出来,把d除下去,得到:
∑ d ∣ n n 2 d ∗ ∑ i = 1 ⌊ n − 1 d ⌋ ( g c d ( i , n d ) = = 1 ) \sum_{d|n}\frac{n^2}{d}*\sum_{i=1}^{\lfloor \frac{n-1}{d} \rfloor}(gcd(i,\frac{n}{d})==1) dndn2i=1dn1(gcd(i,dn)==1)

n d \frac{n}{d} dn看做D。(其实 n d \frac{n}{d} dn和d是等价的)变成:
n ∗ ∑ D ∣ n D ∗ ∑ i = 1 D − 1 ( g c d ( i , D ) = = 1 ) n*\sum_{D|n}D*\sum_{i=1}^{D-1}(gcd(i,D)==1) nDnDi=1D1(gcd(i,D)==1)

这里可以把 ⌊ n − 1 d ⌋ \lfloor \frac{n-1}{d} \rfloor dn1看做是 D − 1 D-1 D1。那么 ∑ i = 1 D − 1 ( g c d ( i , D ) = = 1 ) \sum_{i=1}^{D-1}(gcd(i,D)==1) i=1D1(gcd(i,D)==1)就可以理解为小于D的与D互质的数的个数。这就是欧拉函数嘛。于是原式变为:
n ∗ ∑ D ∣ n , D ! = 1 D ∗ ϕ ( D ) n*\sum_{D|n,D!=1}D*\phi(D) nDn,D!=1Dϕ(D)

我们发现,只要得到每个数的约数就能算出答案了。但是对于每个数去求一次约数,由于有3e5个询问,时限显然不够。那么可以反过来考虑——考虑每一个数对它倍数的贡献。 D ! = 1 D!=1 D!=1是因为如果 D = 1 D=1 D=1,那么 d = n d=n d=n,那么 i = n i=n i=n,由于把 i = n i=n i=n排除了,所以要排除 D = 1 D=1 D=1的情况。

for(int i=1;i<maxn;++i)
		for(int j=2;((j<maxn)&&((i*j)<maxn));++j)
		ans[i*j]+=(ll)j*phi[j];
	for(int i=1;i<maxn;++i) ans[i]=(ll)(ans[i]/2)*i+i;

这里 j j j代表的就是刚才的 D D D,枚举 i i i的所有倍数,把答案记在它的倍数上。然后代进之前推的完整的式子,就可以 O ( 1 ) O(1) O(1)查询了。
下面是完整代码。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1e6+10;
int phi[maxn],mark[maxn],P[maxn],cnt=0,T,x;
ll ans[maxn];
inline void pre(){
	phi[1]=1;
	for(int i=2;i<=maxn;++i){
		if(!mark[i]) P[++cnt]=i,phi[i]=i-1;
		for(int j=1;((j<=cnt)&&(P[j]*i<maxn));++j){
			mark[P[j]*i]=1;
			if(i%P[j]==0){
				phi[i*P[j]]=phi[i]*P[j];
				break;
			}phi[i*P[j]]=phi[i]*phi[P[j]];
		}
	}
	for(int i=1;i<maxn;++i)
		for(int j=2;((j<maxn)&&((i*j)<maxn));++j)
		ans[i*j]+=(ll)j*phi[j];
	for(int i=1;i<maxn;++i) ans[i]=(ll)(ans[i]/2)*i+i;
}
inline void print(ll x){
	if(x>9) print(x/10);
	putchar(x%10+'0');
}
int main(){
	pre(),scanf("%d",&T);
	while(T--)scanf("%d",&x),print(ans[x]),putchar(10);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值