简述:
树上启发式合并又叫 dsu on tree ,是解决可以离线的子树问题的一种方法。
优点:时间复杂度优秀 O ( n l o g n ) O(n logn) O(nlogn),在一些可以使用 dfs 序 + 莫队 算法 O ( n n ) O(n\sqrt{n}) O(nn)的题目中有很强的优越性,相比线段树码量要小的多。
核心思想:树上启发式合并利用重链剖分的性质优化子树贡献的计算。
题目链接
思路:
其实是树上启发式合并的入门题目,考虑小的集合向大的集合合并,大的集合就是重儿子。
- 找重儿子这里和树链剖分是一样的
- 对每个以当前为根的子树,都先走他的轻儿子,再走他的重儿子(和重链剖分正好相反,树上启发式合并重点之一)。
- 在走每个轻儿子时都要计算并记录答案,需要开一个数组记录颜色个数,由于 dfs 的特性在访问另外的儿子时需要清空数组(简单解释下,这个问题在 dfs 解决子树问题时很常见,数组是一维的,父的信息是由所有子得来的,在计算子的答案产生的信息会影响其他子的计算)
- 最后计算重儿子并记录答案,不清空数组(树上启发式合并重点之一,此时子的答案算完了),暴力加入所有轻儿子的信息,计算父节点。
- 输出答案 for 一遍。
乱搞下时间复杂度证明:
每次是小的集合向大的集合合并,时间长在了轻儿子的暴力,一个节点可能进出多次,次数是它作为轻边的次数,而由于重链剖分的性质,任意一个点往上跳时所经过的重链数量不超过 O ( l o g n ) O(logn) O(logn),所以重链交界处(轻边)的数量也不会超过 O ( l o g n ) O(logn) O(logn) ,因此每个点的统计次数也为 O ( l o g n ) O(logn) O(logn)。总时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)。
关于重链剖分的性质证明建议百度。。
Code:
莫队+dfs 序也可以写,但懒得写了。

本文介绍了树上启发式合并(DSU on Tree)的概念和优势,它在解决离线子树问题时能实现O(nlogn)的时间复杂度。文章通过一个实例展示了如何使用该方法,包括找重儿子、计算子树贡献等关键步骤,并给出了C++代码实现。此外,还简要分析了时间复杂度并提到了与莫队算法的比较。
最低0.47元/天 解锁文章
1912

被折叠的 条评论
为什么被折叠?



