逻辑题相关(包括编程算法)

本文探讨了两类游戏的获胜策略:取火柴和取石子游戏。对于取火柴游戏,当火柴数量n除以(m+1)的余数为1时,先取者必败,否则必胜。对于取石子游戏,通过将石子数量转换为二进制,分析每位上1的个数,先取者能获胜的关键在于使所有位上的1的个数变为偶数。举例分析了不同情况下的获胜策略,并指出在给定的石子堆中,先取者可以通过取32个石子赢得比赛。
摘要由CSDN通过智能技术生成

 

 

1,筐中放了2004只球,甲,乙两位同学轮流取球,每次只能取1只2只3只4只不能多取,谁能最后一次恰好取完球,谁就获胜,甲想获胜,他应该怎样去玩这游戏?
假设每次是去1~n只,则用总数÷(1+n),若没有余数,则后取者胜,要求取的只数与前者的和为1+n;若有余数,则先取者胜,要求先取走余数,然后取的只数与前者的和为1+n。
本题解为:2004÷(1+4)=400……4,则甲应选先取,取4个,然后和对手取的只数和为5只即能获胜。

盘里有25个球甲乙两人轮流拿一次最少拿一个最多拿3个谁拿到最后一个球谁就输,甲如何才能立于不败之地?
如果甲先拿:则甲必败,因为乙每次拿的都是4-甲,那么最后一定剩一个,所以甲败
如果甲后拿:则不管乙拿多少,甲都拿4-乙,于是最后一定剩1个归乙拿
这个题出的不明确,没规定谁先拿先。

例1:2. 取火柴游戏的规则如下:一堆火柴有N根,A、B两人轮流取出。每人每次可以取1 根或
2 根,最先没有火柴可取的人为败方,另一方为胜方。如果先取者有必胜策略则记为1,
先取者没有必胜策略记为0。当N 分别为100,200,300,400,500 时,先取者有无必
胜策略的标记顺序为(回答应为一个由0 和/或1 组成的字符串)。


例2:2.(取石子游戏)现有5堆石子,石子数依次为3,5,7,19,50,甲乙两人轮流从任一堆中任取(每次只能取自一堆,不能不取),取最 后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值