打开Tensorboard
首先在代码中标注你需要观测的变量
m1=tf.constant([[4.,3.]])
tf.summary.histogram('m1', m1)
m2=tf.constant([[2.],[2.]])
tf.summary.histogram('m2', m2)
同类型的指令有
- tf.summary.scalar
- tf.summary.image
- tf.summary.audio
- tf.summary.text
- tf.summary.histogram
等后边用起来了再做具体补充。
生成总结信息
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('F:\test',sess.graph)
‘’在 TensorFlow 中,只有当您运行指令时,指令才会执行,或者另一个 op 依赖于指令的输出时,指令才会运行。我们刚才创建的这些总结节点都围绕着您的图:您目前运行的 op 都不依赖于这些节点的结果。因此,为了生成总结信息,我们需要运行所有这些总结节点。这样的手动操作是枯燥而乏味的,因此可以使用 tf.summary.merge_all 将这些操作合并为一个操作,从而生成所有汇总数据。‘’——官方 https://tensorflow.google.cn/guide/summaries_and_tensorboard
运行之后即可发现目录下有了记录文件。
启动Tensorboard
官方提供的代码如下
tensorboard --logdir=path
path为之前写文件的路径,运行后提示登录网页,作者登录后发现网页乱码,解决方法参考:https://jingyan.baidu.com/article/e9fb46e1c55ac93520f7666b.html
需要在命令行后追加指定host
tensorboard --logdir=path --host=127.0.0.1
重新登录网页Tensorboard正常运行。