阳光玻璃杯

记录学习的点点滴滴

CupCnn 添加rnn的实现

github地址: CupDnn地址(给个小星星呗^~^) RNN的原理? 。。。。嗯。。。不想多说,很多介绍其原理的文章,所以这里就不啰嗦了。 为什么推荐CupDnn中实现的rnn? 足够简单,可能是最简单的实现吧,很容易学习。 有例子吗? 有的。给的例子是计算两个数相加。比如1+...

2019-04-14 17:53:06

阅读数 121

评论数 1

CupCnn的最近的一些更新情况

CupCnn是一个用java写的卷积神经网络。 支持L1、L2正则化 正则化的理论非常复杂,推导过程也比较繁琐,但是实现确实异常的容易,主要体现在权重的衰减。通俗的讲,就是我们每次在更新权重w的时候,可以的让他比应该的大小减小一点。 // TODO Auto-generated method s...

2019-02-21 16:34:50

阅读数 207

评论数 7

计算图(graph)的遍历

很久没有写博客了,忙并不是借口,懒才是理由。 一直想重构CupCnn,写成一个通用的计算图,能随意搭建各种神经网络(CupCnn只能搭建一个但链路的有序的神经网络),然后把名字也改了,叫CupDnn好了。所以,今天先写着试下遍历一个计算图吧。 先随便构造一个简单的计算图,如下: 关于这个图的说明...

2019-01-05 15:25:07

阅读数 338

评论数 0

caffe lstm训练mnist手写数字

我们可以把深度学习能做的事情分为两类:时间无关的事情和时间相关的事情。时间无关的话,比如人脸识别,给神经网络一张照片,神经网络就能告诉你这是谁,这是和时间无关的。时间相关的话,比如,我要知道一段视频里的人实在吃饭还是在打哈欠,这个可能通过一张照片是无法判别的,但是通过多张连续的图片,构成一段视频,...

2018-09-20 21:12:02

阅读数 395

评论数 4

Android neon 学习笔记

首先新建一个包含native代码的项目: 然后在gradle中添加对neon的支持: externalNativeBuild { cmake { cppFlags "-std=c++1...

2018-09-07 17:25:44

阅读数 626

评论数 0

vmware 虚拟机损坏后的修复办法

为了给虚拟机调整分区的大小,使用fdisk命令新建了一个分区,还没搞明白问题出在了什么地方,总之,fdisk把原来的文件系统给搞坏了。重启之后,虚拟机无法启动了,进入了grub rescure模式。里面还有很多种要的文件啊,最近一段时间的工作成果全在里面,这可怎么办呀? 因为是文件系统损坏,所以...

2018-08-29 10:18:07

阅读数 5966

评论数 2

使用卷积神经网络(CupCnn)训练人脸检测模型

结果展示 最近尝试做了下人脸检测,先上两张效果图吧: 这已经是跳出来的效果比较好的图片了,表现的确是有点差。 我用了4000(19*19)多张人脸图片和8000(19*19)多张非人脸图片训练出了这个卷积模型。这个数据量确实有点少,所以效果不太好也是可以理解的。主要还是分享做人脸检测...

2018-03-12 16:44:15

阅读数 2481

评论数 25

自己制作机器学习训练和测试使用的二进制数据集(C++)

本文主要分享笔者仿照Cifar-10二进制数据库的格式,自己制作机器学习使用的二进制数据库。经过封装后,非常方便使用。代码可用Github下载:BinaryDataset 关于Cifar-10 CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像。 ...

2018-03-10 14:39:03

阅读数 750

评论数 3

java写卷积神经网络---卷积神经网络(CupCnn)的数据结构

前言 我在写CupCnn的时候,一个困扰我很久的问题,就是如何组织卷积神经网络的数据结构。尤其是卷积层和全连接层之间的衔接问题。卷积层至少需要四维的数据结构(batch+channel+height+width),而全连接层则只需一个二维的数据即可(batch+数据)。 CupCnn是我用ja...

2018-02-24 10:02:39

阅读数 1250

评论数 2

java写卷积神经网络---CupCnn简介

前言 在机器学习中,卷积神经网络是一种深度前馈人工神经网络,已成功地应用于图像识别。目前,很多的车牌识号识别,人脸识别等都采用卷积神经网络,可以说卷积神经网络在图像识别方面取得了巨大的成功。当前开源的深度学习框架有很多了,比如caffe,tensorflow,torch等,这些深度学习框架包含了...

2018-02-04 17:53:22

阅读数 4976

评论数 3

python 计算并绘制灰度直方图

其灰度直方图为: 其灰度直方图为: 代码如下: def calHistogram(img): if(len(img.shape) != 2): print("img size error") retur...

2017-12-12 16:21:50

阅读数 2807

评论数 2

python 使用Id3算法实现决策树

依然是学习《统计学习方法》一书所做的简单实验,写代码的过程参考了大量其他的博客,本人在此深表感谢。代码实现的依然是书上的例子: import numpy as np import math import operatordef CreateDataSet(): dataset = [ [...

2017-12-05 16:20:16

阅读数 947

评论数 1

python KNN算法的简单实现

这里依然是学习《统计学习方法》一书中,K近邻算法的一个实验尝试。具体理论可参考该输,这里简单贴出K近邻算法的思想及实现步骤: 结果展示如下: 大的红点是传入的测试点,k传入的是5,也就是说大红点的周围5个点决定大红点的类别。 上图便是判定大红点属于红色类别的判别过程。也就是说,他周围最近...

2017-12-01 19:29:34

阅读数 593

评论数 0

python 朴素贝叶斯

这里的代码应该是学习《统计学习方法》的实验练习吧。代码实现的是《统计学习方法》中第四章朴素贝叶斯法的一个实例,实例如下: 、实现的步骤也是按照书中的步骤,如有问题,谢谢指正。 import numpy as np import pickle import osdef creatDataAndL...

2017-12-01 16:02:13

阅读数 314

评论数 0

python K-Means聚类算法的实现

K-Means 简介聚类算法有很多种(几十种),K-Means是聚类算法中的最常用的一种,算法最大的特点是简单,好理解,运算速度快,但是只能应用于连续型的数据,并且一定要在聚类前需要手工指定要分成几类。 具体实现步骤如下: 给定n个训练样本{x1,x2,x3,…,xn}  kmeans算法过程...

2017-11-29 19:22:09

阅读数 3214

评论数 1

python adaboost的简单实现

初学adaboost,自己尝试着写了下adaboost的实现,这个实现以几个简单的数字作为训练样本,当然,这些数字是带标签的。然后尝试着使用adaboost对其分类。对于10个带标签的数字,分类他们只需要3个左右的弱分类器级联,组成一个强分类器就可以完全正确的分类。如果代码本身没有bug的话,ad...

2017-11-10 17:35:58

阅读数 589

评论数 0

python 计算积分图和haar特征

import cv2 import numpy as np import matplotlib.pyplot as pltdef integral(img): integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int...

2017-11-09 17:19:40

阅读数 1606

评论数 6

计算联通区域

对于这样的图片: 抠出其中的黑色区域,效果如下: import cv2 import numpy as np import matplotlib.pyplot as plt import timedef findUnicomArea(img): #先二值化 ret,thresh...

2017-11-06 20:31:00

阅读数 3500

评论数 2

TimePicker和DatePicker修改文字颜色

使用TimePicker和DatePicker的时候,发现不能设置二者的文字颜色,颜色总是黑色,找来找去也找到设置文字颜色的接口,最终google到了结果,发现很好使,特做记录。 <TimePicker android:theme=&qu...

2017-10-25 10:56:49

阅读数 2096

评论数 0

opencv_traincascade训练人脸检测

生成样本: opencv_createsamples -vec F:\work\ml\apple-rec\data\pos.vec -info F:\work\ml\apple-rec\data\pos\pos.txt -bg F:\work\ml\apple-rec\data\neg\neg...

2017-09-14 18:10:02

阅读数 449

评论数 0

提示
确定要删除当前文章?
取消 删除