题目:63.不同路径 ||
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
解题思路:
首次解题采用的是动态规划,因为机器人每次只能向下或者向右移动一步,因此到dp[i][j]位置的路线为dp[i - 1][j] + dp[i][j - 1]
而处于边界位置上的则为dp[0][j] = dp[0][j - 1] 或者 dp[i][0] = dp[i - 1][0],还有几个极端情况就是网格为空,则自然返回0,网格左上角的元素为1.则自然也返回0;代码如下:
class Solution {
public static int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid.length == 0) {
return 0;
}
if (obstacleGrid[0][0] == 1) {
return 0;
}
int lineLen = obstacleGrid.length;
int rowLen = obstacleGrid[0].length;
int[][] dp = new int[lineLen][rowLen];
for (int i = 0; i < lineLen; i++) {
for (int j = 0; j < rowLen; j++) {
if (obstacleGrid[i][j] != 0) {
dp[i][j] = 0;
} else {
if (i == 0 && j == 0) {
dp[i][j] = 1;
} else if (i == 0 && j > 0) {
dp[i][j] = dp[i][j - 1];
} else if (i > 0 && j == 0) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
}
return dp[lineLen - 1][rowLen - 1];
}
}