leetcode 63. 不同路径 II

题目:63.不同路径 ||

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

 

解题思路:

首次解题采用的是动态规划,因为机器人每次只能向下或者向右移动一步,因此到dp[i][j]位置的路线为dp[i - 1][j] + dp[i][j - 1]

而处于边界位置上的则为dp[0][j] = dp[0][j - 1] 或者 dp[i][0] = dp[i - 1][0],还有几个极端情况就是网格为空,则自然返回0,网格左上角的元素为1.则自然也返回0;代码如下:

class Solution {
    public static int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if (obstacleGrid.length == 0) {
            return 0;
        }
        if (obstacleGrid[0][0] == 1) {
            return 0;
        }
        int lineLen = obstacleGrid.length;
        int rowLen = obstacleGrid[0].length;
        int[][] dp = new int[lineLen][rowLen];
        for (int i = 0; i < lineLen; i++) {
            for (int j = 0; j < rowLen; j++) {
                if (obstacleGrid[i][j] != 0) {
                    dp[i][j] = 0;
                } else {
                    if (i == 0 && j == 0) {
                        dp[i][j] = 1;
                    } else if (i == 0 && j > 0) {
                        dp[i][j] = dp[i][j - 1];
                    } else if (i > 0 && j == 0) {
                        dp[i][j] = dp[i - 1][j];
                    } else {
                        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                    }
                }
            }
        }
        return dp[lineLen - 1][rowLen - 1];

    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值