题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
说明:m 和 n 的值均不超过 100。
示例 1:
输入:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
输出: 2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
题目理解
代码实现
class Solution:
def uniquePathsWithObstacles(self, obstacleGrid):
"""
:type obstacleGrid: List[List[int]]
:rtype: int
"""
m = len(obstacleGrid)
n = len(obstacleGrid[0])
if m ==0:
return 0
#建立网格 m*n
dp = [[0 for i in range(n)] for j in range(m)]
# 先填横行,遇到障碍就跳出,因为障碍的右边和下边都不能走,记为0
for i in range(m):
if obstacleGrid[i][0] !=1:
dp[i][0] =1
else:
break
for j in range(n):
if obstacleGrid[0][j] !=1:
dp[0][j] = 1
else:
break
# 开始填最大的路径数
for i in range(1,m):
for j in range(1,n):
#判断是否是障碍物
if obstacleGrid[i][j] !=1:
dp[i][j] = dp[i-1][j] + dp[i][j-1]
return dp[-1][-1]